Câu hỏi:
21/08/2024 1,497
Trong không gian Oxyz, cho ba điểm A(0; 0; 2), B(1; 2; 1), C(2; 3; 4).
a) Viết phương trình tham số, phương trình chính tắc của đường thẳng AB.
b) Viết phương trình tham số của đường thẳng d đi qua điểm C và song song với AB.
Trong không gian Oxyz, cho ba điểm A(0; 0; 2), B(1; 2; 1), C(2; 3; 4).
a) Viết phương trình tham số, phương trình chính tắc của đường thẳng AB.
b) Viết phương trình tham số của đường thẳng d đi qua điểm C và song song với AB.
Quảng cáo
Trả lời:
a) Ta có: \(\overrightarrow {AB} \) = (1; 2; −1) là một vectơ chỉ phương của đường thẳng AB và đường thẳng AB đi qua A(0; 0; 2) nên phương trình tham số của đường thẳng AB là \(\left\{ \begin{array}{l}x = t\\y = 2t\\z = 2 - t\end{array} \right.\).
Phương trình chính tắc của đường thẳng AB là \(\frac{x}{1} = \frac{y}{2} = \frac{{z - 2}}{{ - 1}}\).
b) Theo đề bài, đường thẳng d song song với đường thẳng AB nên \(\overrightarrow {AB} \) = (1; 2; −1) chính là vectơ chỉ phương của đường thẳng d và đường thẳng d đi qua C(2; 3; 4).
Do đó, phương trình tham số của đường thẳng d \(\left\{ \begin{array}{l}x = 2 + t\\y = 3 + 2t\\z = 4 - t\end{array} \right.\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(\overrightarrow {{u_d}} \) = (−1; 1; 2), \(\overrightarrow {{u_{d'}}} \) = (3; 2; −1) lần lượt là vectơ chỉ phương của đường thẳng d và d'.
Đường thẳng d đi qua A(1; 2; −3), đường thẳng d' đi qua B(−2; −1; 0)
⇒ \(\overrightarrow {AB} \) = (−3; −3; 3).
Có \(\left[ {\overrightarrow {{u_d}} ,\overrightarrow {{u_{d'}}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&2\\2&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&{ - 1}\\{ - 1}&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&1\\3&2\end{array}} \right|} \right)\) = (−5; 5; −5).
Ta được \(\left[ {\overrightarrow {{u_d}} ,\overrightarrow {{u_{d'}}} } \right].\overrightarrow {AB} \) = −5.(−3) + 5.(−3) + 3.(−5) = −15 ≠ 0.
Vậy hai đường thẳng d và d' chéo nhau.
Lời giải
a) Theo đề, I là giao của đường thẳng d và mặt phẳng (P).
Gọi I(2 + 3t; −1 – t; – 3 + 2t), thay vào phương trình mặt phẳng (P) được
2 + 3t – (−1 – t) – (−3 + 2t) = 0
⇔ 2t + 6 = 0
⇔ t = −3.
Vậy I(−7; 2; −9).
b) Ta có vectơ pháp tuyến của mặt phẳng (P) là \(\overrightarrow {{n_P}} \) = (1; −1; −1), vectơ chỉ phương của đường thẳng d là \(\overrightarrow {{u_d}} \) = (3; −1; 2).
Do d' nằm trên (P), cắt đường thẳng d và vuông góc với d nên đường thẳng d' đi qua điểm I(−7; 2; −9) và nhận \(\left[ {\overrightarrow {{n_P}} ,\overrightarrow {{u_d}} } \right]\) làm vectơ chỉ phương.
Ta có: \(\left[ {\overrightarrow {{n_P}} ,\overrightarrow {{u_d}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 1}\\{ - 1}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&1\\2&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&{ - 1}\\3&{ - 1}\end{array}} \right|} \right)\) = (−1; −5; 2).
Phương trình tham số của đường thẳng d' là \(\left\{ \begin{array}{l}x = - 7 - t\\y = 2 - 5t\\z = - 9 + 2t\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.