Câu hỏi:
21/08/2024 15,361Trong không gian Oxyz, cho hai đường thẳng:
d: \(\left\{ \begin{array}{l}x = 1 - t\\y = 2 + t\\z = - 3 + 2t\end{array} \right.\) và d': \(\frac{{x + 2}}{3} = \frac{{y + 1}}{2} = \frac{z}{{ - 1}}\).
Xét vị trí tương đối giữa hai đường thẳng d và d'.
Quảng cáo
Trả lời:
Ta có: \(\overrightarrow {{u_d}} \) = (−1; 1; 2), \(\overrightarrow {{u_{d'}}} \) = (3; 2; −1) lần lượt là vectơ chỉ phương của đường thẳng d và d'.
Đường thẳng d đi qua A(1; 2; −3), đường thẳng d' đi qua B(−2; −1; 0)
⇒ \(\overrightarrow {AB} \) = (−3; −3; 3).
Có \(\left[ {\overrightarrow {{u_d}} ,\overrightarrow {{u_{d'}}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&2\\2&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&{ - 1}\\{ - 1}&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&1\\3&2\end{array}} \right|} \right)\) = (−5; 5; −5).
Ta được \(\left[ {\overrightarrow {{u_d}} ,\overrightarrow {{u_{d'}}} } \right].\overrightarrow {AB} \) = −5.(−3) + 5.(−3) + 3.(−5) = −15 ≠ 0.
Vậy hai đường thẳng d và d' chéo nhau.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Theo đề, I là giao của đường thẳng d và mặt phẳng (P).
Gọi I(2 + 3t; −1 – t; – 3 + 2t), thay vào phương trình mặt phẳng (P) được
2 + 3t – (−1 – t) – (−3 + 2t) = 0
⇔ 2t + 6 = 0
⇔ t = −3.
Vậy I(−7; 2; −9).
b) Ta có vectơ pháp tuyến của mặt phẳng (P) là \(\overrightarrow {{n_P}} \) = (1; −1; −1), vectơ chỉ phương của đường thẳng d là \(\overrightarrow {{u_d}} \) = (3; −1; 2).
Do d' nằm trên (P), cắt đường thẳng d và vuông góc với d nên đường thẳng d' đi qua điểm I(−7; 2; −9) và nhận \(\left[ {\overrightarrow {{n_P}} ,\overrightarrow {{u_d}} } \right]\) làm vectơ chỉ phương.
Ta có: \(\left[ {\overrightarrow {{n_P}} ,\overrightarrow {{u_d}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 1}\\{ - 1}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&1\\2&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&{ - 1}\\3&{ - 1}\end{array}} \right|} \right)\) = (−1; −5; 2).
Phương trình tham số của đường thẳng d' là \(\left\{ \begin{array}{l}x = - 7 - t\\y = 2 - 5t\\z = - 9 + 2t\end{array} \right.\).
Lời giải
a) Ta có: \(\overrightarrow {{u_d}} \) = (2; 1; −3) và \(\overrightarrow {{u_{d'}}} \)= (−2; −1; 3) = −1(2; 1; −3) là hai vectơ cùng phương và điểm A(1; −2; 4) thuộc đường thẳng d nhưng không thuộc d' (do thay A và d' thì hệ \(\left\{ \begin{array}{l}1 - 2s = 1\\2 - s = - 2\\5 + 3s = 4\end{array} \right.\) vô nghiệm).
Do đó, d ∥ d'.
b) Ta có: \(\overrightarrow {{u_d}} \) = (2; 1; −3).
Lấy A(1; −2; 4) ∈ d và B(1; 2; 5) ∈ d' ⇒ \(\overrightarrow {AB} \) = (0; 4; 1).
Do (P) chứa hai đường thẳng d và d' nên vectơ pháp tuyến của mặt phẳng (P) là
\(\overrightarrow {{n_P}} = \left[ {\overrightarrow {{u_d}} ,\overrightarrow {AB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&{ - 3}\\4&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 3}&2\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&1\\0&4\end{array}} \right|} \right)\) = (13; −2; 8).
Phương trình mặt phẳng (P) là:
13(x – 1) – 2(y + 2) + 8(z – 4) = 0
⇔ 13x – 2y + 8z – 49 = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận