Câu hỏi:
21/08/2024 359Trong không gian Oxyz, cho hai đường thẳng:
d: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2 + t\\z = 4 - 3t\end{array} \right.\) và d': \(\left\{ \begin{array}{l}x = 1 - 2s\\y = 2 - s\\z = 5 + 3s.\end{array} \right.\)
a) Chứng minh rằng d // d'.
b) Viết phương trình mặt phẳng (P) chứa d và d'.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có: \(\overrightarrow {{u_d}} \) = (2; 1; −3) và \(\overrightarrow {{u_{d'}}} \)= (−2; −1; 3) = −1(2; 1; −3) là hai vectơ cùng phương và điểm A(1; −2; 4) thuộc đường thẳng d nhưng không thuộc d' (do thay A và d' thì hệ \(\left\{ \begin{array}{l}1 - 2s = 1\\2 - s = - 2\\5 + 3s = 4\end{array} \right.\) vô nghiệm).
Do đó, d ∥ d'.
b) Ta có: \(\overrightarrow {{u_d}} \) = (2; 1; −3).
Lấy A(1; −2; 4) ∈ d và B(1; 2; 5) ∈ d' ⇒ \(\overrightarrow {AB} \) = (0; 4; 1).
Do (P) chứa hai đường thẳng d và d' nên vectơ pháp tuyến của mặt phẳng (P) là
\(\overrightarrow {{n_P}} = \left[ {\overrightarrow {{u_d}} ,\overrightarrow {AB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&{ - 3}\\4&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 3}&2\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&1\\0&4\end{array}} \right|} \right)\) = (13; −2; 8).
Phương trình mặt phẳng (P) là:
13(x – 1) – 2(y + 2) + 8(z – 4) = 0
⇔ 13x – 2y + 8z – 49 = 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz, cho đường thẳng d: \(\left\{ \begin{array}{l}x = 2 + 3t\\y = - 1 - t\\z = - 3 + 2t\end{array} \right.\) và mặt phẳng (P): x – y – z = 0.
a) Tìm tọa độ giao điểm I của đường thẳng d và mặt phẳng (P).
b) Viết phương trình đường thẳng d' nằm trên mặt phẳng (P) sao cho d' cắt và vuông góc với d.
Câu 2:
Trong không gian Oxyz, cho mặt phẳng (P): 2x – 3y – z + 2 = 0 và điểm A(1; −1; −2).
a) Viết phương trình tham số của đường thẳng d đi qua A và vuông góc với mặt phẳng (P).
b) Tìm tọa độ giao điểm của đường thẳng d và mặt phẳng (P).
Câu 3:
Trong không gian Oxyz, một xe tải có chiều cao bằng 1, di chuyển trên mặt phẳng (Oxyz) và cần chui qua gầm của một cây cầu. Cây cầu đó thuộc đường thẳng ∆: \(\left\{ \begin{array}{l}x = 1 + t\\y = - 1 + 2t\\z = 2\end{array} \right.\). Hỏi chiều cao của gầm cầu có đủ để xe tải chui qua hay không?
Câu 4:
Trong không gian Oxyz, một người ở trong một căn phòng, mắt người đặt tại vị trí A(1; 2; 3), nhìn ra ngoài khu vườn qua một khung của sổ có dạng hình tròn tâm O(0; 0; 0), bán kính 2 và thuộc mặt phẳng (Oyz). Hỏi qua khung cửa sổ, người đó có nhìn thấy bông hoa ở vị trí M(−2; 1; 1) hay không?
Câu 5:
Trong không gian Oxyz, cho hai đường thẳng:
d: \(\left\{ \begin{array}{l}x = 1 - t\\y = 2 + t\\z = - 3 + 2t\end{array} \right.\) và d': \(\frac{{x + 2}}{3} = \frac{{y + 1}}{2} = \frac{z}{{ - 1}}\).
Xét vị trí tương đối giữa hai đường thẳng d và d'.
Câu 6:
Trong không gian Oxyz, cho ba điểm A(0; 0; 2), B(1; 2; 1), C(2; 3; 4).
a) Viết phương trình tham số, phương trình chính tắc của đường thẳng AB.
b) Viết phương trình tham số của đường thẳng d đi qua điểm C và song song với AB.
về câu hỏi!