Câu hỏi:
22/08/2024 5,504
Cho hàm số y = f(x) liên tục trên [a; b] và
f(x) ≤ 0, ∀x ∈ [a; b]. Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng x = a, x = b được tính bằng công thức
A. S = \(\int\limits_a^b {f\left( x \right)dx} \).
B. S = \( - \int\limits_a^b {f\left( x \right)dx} \).
C. S = \(\pi \int\limits_a^b {f\left( x \right)dx} \).
D. S = \(\pi \int\limits_a^b {{{\left[ {f\left( x \right)} \right]}^2}dx} \).
Cho hàm số y = f(x) liên tục trên [a; b] và
f(x) ≤ 0, ∀x ∈ [a; b]. Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng x = a, x = b được tính bằng công thức
A. S = \(\int\limits_a^b {f\left( x \right)dx} \).
B. S = \( - \int\limits_a^b {f\left( x \right)dx} \).
C. S = \(\pi \int\limits_a^b {f\left( x \right)dx} \).
D. S = \(\pi \int\limits_a^b {{{\left[ {f\left( x \right)} \right]}^2}dx} \).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có công thức: S = \(\int\limits_a^b {\left| {f\left( x \right)} \right|dx} = - \int\limits_a^b {f\left( x \right)dx} \) (do f(x) ≤ 0, ∀x ∈ [a; b]).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Quãng đường ô tô đồ chơi đi đến khi dừng lại là:
S(t) = \(\int\limits_0^5 {v\left( t \right)dt = \int\limits_0^5 {\left( {\frac{1}{2}{t^2} - 0,1{t^3}} \right)dt} } = \left. {\left( {\frac{{{t^3}}}{6} - \frac{{0,1{t^4}}}{4}} \right)} \right|_0^5 = \frac{{{5^3}}}{6} - \frac{{0,{{1.5}^4}}}{4}\) ≈ 5,21 (m).
Lời giải
Đáp án đúng là: D
Ta có N(t) = \(\int {N'\left( t \right)dt = \int {\frac{{8000dt}}{t} = 8000\int {\frac{{dt}}{t}} } } \) = 8 000ln\(\left| t \right|\) + C.
Ngày thứ nhất, số lượng vi khuẩn là 250 000 con, nên N(1) = 250 000 con,
tức là C = 250 000.
Số lượng vi khuẩn sau 6 ngày là:
N(6) = 8 000.ln\(\left| 6 \right|\) + 250 000 ≈ 264 334 (con).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.