Câu hỏi:

22/08/2024 36,661

Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây là đúng?

A. \(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AD} \).

B. \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC'} \).

C. \(\overrightarrow {AA'}  + \overrightarrow {AC}  = \overrightarrow {AC'} \).

D. \(\overrightarrow {AA'}  + \overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây là đúng? A. AB  + AC = AD. B. AB  +AD  =AC'. C. AA'  + AC  = AC'. (ảnh 1)

Có tứ giác ACC'A' là hình chữ nhật nên \(\overrightarrow {AA'}  + \overrightarrow {AC}  = \overrightarrow {AC'} \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Cho hình lập phương ABCD.A'B'C'D' có độ dài mỗi cạnh bằng 2. Tích vô hướng AB .B'D' bằng A. 4. B. 2 căn 2. C. -2 căn 2. D. −4. (ảnh 1)

Ta có: \(\overrightarrow {AB} .\overrightarrow {B'D'} \) = \(\overrightarrow {AB} .\overrightarrow {BD} \)

                          = \(\overrightarrow {AB} \left( {\overrightarrow {BA}  + \overrightarrow {BC} } \right)\)

                          = \(\overrightarrow {AB} .\overrightarrow {BA}  + \overrightarrow {AB} .\overrightarrow {BC} \)

                          = 2.2.cos180° − 2.2.cos90° = −4.

Lời giải

a) Có thể lập hệ tọa độ Oxyz như hình vẽ sau.

Khi đó đầu gậy nằm trên sàn nhà có tọa độ (1; 0,8; 0).

Một chiếc gậy có chiều dài 2,5 m được đặt trong góc phòng như hình sau đây. Một đầu gậy nằm trên sàn, cách hai bức tường lần lượt là 1 m và 0,8 m.  (ảnh 1)

b) Gọi khoảng cách từ đầu dây trên mép tường đến sàn nhà là a (m) (a > 0).

Khi đó, chiều dài của chiếc gậy bằng \(\sqrt {{{\left( {1 - 0} \right)}^2} + {{\left( {0,8 - 0} \right)}^2} + {{\left( {0 - a} \right)}^2}}  = \sqrt {{a^2} + 1,64} \).

Suy ra, \(\sqrt {{a^2} + 1,64}  = 2,5\).

Do đó, a ≈ 2,15.

Vậy đầu gậy trên mép tường cách sàn nhà khoảng 2,15 m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay