Câu hỏi:
22/08/2024 4,432
Cho hai biến cố A và B với P(A) > 0, P(B) > 0. Chứng minh rằng nếu P(AB) = P(A).P(B) thì A và B độc lập.
Cho hai biến cố A và B với P(A) > 0, P(B) > 0. Chứng minh rằng nếu P(AB) = P(A).P(B) thì A và B độc lập.
Quảng cáo
Trả lời:
Giả sử: P(AB) = P(A).P(B) với P(A) > 0, P(B) > 0.
Ta có: P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{P\left( A \right).P\left( B \right)}}{{P\left( B \right)}}\) = P(A);
P(B | A) = \(\frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{P\left( A \right).P\left( B \right)}}{{P\left( A \right)}}\) = P(B).
Vậy P(A | B) = P(A), P(B | A) = P(B).
Từ đó, việc xảy ra biến cố B không ảnh hưởng tới xác suất xảy ra của biến cố A và ngược lại.
Do đó, A và B độc lập.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi E là biến cố: “Trong hai viên bi lấy ra có ít nhất một viên bi màu đỏ”.
\(\overline E \)là biến cố: “Cả hai viên bi rút ra đều là viên bi xanh”.
Gọi A là biến cố: “Sơn lấy được viên bi xanh”;
B là biến cố: “Tùng lấy được viên bi xanh”.
Ta có: P(\(\overline E \)) = P(AB).
P(A) = \(\frac{3}{{3 + 5}} = \frac{3}{8}\); P(B | A) = \(\frac{{C_2^1}}{{C_7^1}} = \frac{2}{7}\).
P(\(\overline E \)) = P(AB) = P(BA) = P(A). P(B | A) = \(\frac{3}{8}.\frac{2}{7} = \frac{3}{{28}}\).
So đó P(E) = 1 – P(\(\overline E \)) = 1 − \(\frac{3}{{28}}\) = \(\frac{{25}}{{28}}\).
Lời giải
Gọi A là biến cố: “Nam rút được thẻ mang số nguyên tố”.
B là biến cố: “Hà rút được thẻ mang số nguyên tố”.
Trong hộp có 8 tấm thẻ ghi số nguyên tố là: {2; 3; 5; 7; 11; 13; 17; 19}, suy ra n(A) = 8.
Nếu A xảy ra thì trong hộp chỉ còn 19 thẻ với 7 thẻ ghi số nguyên tố. Do đó:
P(A) = \(\frac{8}{{20}}\); P(B | A) = \(\frac{7}{{19}}\).
Vậy P(AB) = \(\frac{8}{{20}}\).\(\frac{7}{{19}}\) = \(\frac{{14}}{{95}}\) ≈ 0,1473.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.