Câu hỏi:

22/08/2024 2,831

Cho hai biến cố A và B với P(A) > 0, P(B) > 0. Chứng minh rằng nếu P(AB) = P(A).P(B) thì A và B độc lập.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử: P(AB) = P(A).P(B) với P(A) > 0, P(B) > 0.

Ta có: P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{P\left( A \right).P\left( B \right)}}{{P\left( B \right)}}\) = P(A);

           P(B | A) = \(\frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{P\left( A \right).P\left( B \right)}}{{P\left( A \right)}}\) = P(B).

Vậy P(A | B) = P(A), P(B | A) = P(B).

Từ đó, việc xảy ra biến cố B không ảnh hưởng tới xác suất xảy ra của biến cố A và ngược lại.

Do đó, A và B độc lập.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một túi đựng 5 viên bi đỏ và 3 viên xanh. Sơn lấy ngẫu nhiên một viên bi đưa cho Tùng rồi Tùng lấy ngẫu nhiên tiếp một viên bi. Tính xác suất để hai viên bi lấy ra có ít nhất một viên bi đỏ.

Xem đáp án » 22/08/2024 4,871

Câu 2:

Một hộp chứa 20 tấm thẻ đánh số {1; 2;…; 20}. Nam rút ngẫu nhiên một tấm thẻ đưa cho Hà rồi Hà rút ngẫu nhiên tiếp một tấm thẻ. Tính xác suất để cả hai thẻ Hà nhận được đều ghi số nguyên tố”.

Xem đáp án » 22/08/2024 2,715

Câu 3:

Một hộp chứa 17 viên bi đỏ, 13 viên bi xanh. An lấy ngẫu nhiên một viên bi đưa cho Bình rồi Bình lấy ngẫu nhiên tiếp một viên bi. Tính xác suất để hai viên bi Bình nhận được:

a) Đều là bi đỏ;

b) Là hai viên bi khác nhau.

Xem đáp án » 22/08/2024 2,591

Câu 4:

Tung con xúc xắc cân đối liên tiếp hai lần. Xét các biến cố sau:

A: “Xuất hiện mặt một chấm ở lần gieo thứ nhất”;

B: “Xuất hiện mặt hai chấm ở lần gieo thứ hai”;

C: “Tổng số chấm xuất hiện ở hai lần gieo bằng 7”.

Chứng minh rằng:

a) Hai biến cố A và B độc lập;

b) Hai biến cố B và C độc lập.

c) Hai biến cố A và C độc lập.

Xem đáp án » 22/08/2024 896

Câu 5:

Cho P(A) = \(\frac{2}{5}\); P(B) = \(\frac{1}{3}\); P(A ∪ B) = \(\frac{1}{2}\). Tính P(A | B) và P(B | A).

Xem đáp án » 22/08/2024 230
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua