Câu hỏi:

22/08/2024 4,074

Cho hai biến cố A và B với P(A) > 0, P(B) > 0. Chứng minh rằng nếu P(AB) = P(A).P(B) thì A và B độc lập.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử: P(AB) = P(A).P(B) với P(A) > 0, P(B) > 0.

Ta có: P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{P\left( A \right).P\left( B \right)}}{{P\left( B \right)}}\) = P(A);

           P(B | A) = \(\frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{P\left( A \right).P\left( B \right)}}{{P\left( A \right)}}\) = P(B).

Vậy P(A | B) = P(A), P(B | A) = P(B).

Từ đó, việc xảy ra biến cố B không ảnh hưởng tới xác suất xảy ra của biến cố A và ngược lại.

Do đó, A và B độc lập.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi E là biến cố: “Trong hai viên bi lấy ra có ít nhất một viên bi màu đỏ”.

       \(\overline E \)là biến cố: “Cả hai viên bi rút ra đều là viên bi xanh”.

Gọi A là biến cố: “Sơn lấy được viên bi xanh”;

       B là biến cố: “Tùng lấy được viên bi xanh”.

Ta có: P(\(\overline E \)) = P(AB).

P(A) = \(\frac{3}{{3 + 5}} = \frac{3}{8}\); P(B | A) = \(\frac{{C_2^1}}{{C_7^1}} = \frac{2}{7}\).

P(\(\overline E \)) = P(AB) = P(BA) = P(A). P(B | A) = \(\frac{3}{8}.\frac{2}{7} = \frac{3}{{28}}\).

So đó P(E) = 1 – P(\(\overline E \)) = 1 − \(\frac{3}{{28}}\) = \(\frac{{25}}{{28}}\).

Lời giải

Gọi A là biến cố: “Nam rút được thẻ mang số nguyên tố”.

       B là biến cố: “Hà rút được thẻ mang số nguyên tố”.

Trong hộp có 8 tấm thẻ ghi số nguyên tố là: {2; 3; 5; 7; 11; 13; 17; 19}, suy ra n(A) = 8.

Nếu A xảy ra thì trong hộp chỉ còn 19 thẻ với 7 thẻ ghi số nguyên tố. Do đó:

P(A) = \(\frac{8}{{20}}\); P(B | A) = \(\frac{7}{{19}}\).

Vậy P(AB) = \(\frac{8}{{20}}\).\(\frac{7}{{19}}\) = \(\frac{{14}}{{95}}\) ≈ 0,1473.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay