Câu hỏi:

22/08/2024 213 Lưu

Bảng tần số ghép nhóm sau cho biết thành tích luyện tập của một vận động viên nghiệp dư chạy maraton chạy 42 km.

Bảng tần số ghép nhóm sau cho biết thành tích luyện tập của một vận động viên nghiệp dư chạy maraton chạy 42 km.   Độ lệch chuẩn của mẫu số liệu ghép nhóm (làm tròn đến chữ số hàng phần trăm) là A. 0,51. B. 0,61. C. 0,71. D. 0,81. (ảnh 1)

Độ lệch chuẩn của mẫu số liệu ghép nhóm (làm tròn đến chữ số hàng phần trăm) là

A. 0,51.

B. 0,61.

C. 0,71.

D. 0,81.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có bảng giá trị đại diện sau:

Bảng tần số ghép nhóm sau cho biết thành tích luyện tập của một vận động viên nghiệp dư chạy maraton chạy 42 km.   Độ lệch chuẩn của mẫu số liệu ghép nhóm (làm tròn đến chữ số hàng phần trăm) là A. 0,51. B. 0,61. C. 0,71. D. 0,81. (ảnh 2)

Ta có số trung bình là:

\(\overline x \) = \(\frac{1}{{20}}\)(6,25.2 + 6,75.6 + 7,25.7 + 7,75.4 + 8,25.1) = 7,15.

Độ lệch chuẩn là:

S = \(\sqrt {\frac{1}{{20}}\left( {2.6,{{25}^2} + 6.6,{{75}^2} + 7.7,{{25}^2} + 4.7,{{75}^2} + 1.8,{{25}^2}} \right) - 7,{{15}^2}} \) ≈ 0,51.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi A là biến cố: “Cặp sinh đôi là song sinh cùng trứng”

           B là biến cố: “Cặp sinh đôi có cùng giới tính”.

Theo đề bài, ta có: P(B | A) = 1, P(B | \(\overline A \)) = \(\frac{1}{2}\) và P(B) = 0,34 + 0,3 = 0,64.

Theo công thức xác suất toàn phần, ta có:

P(B) = P(A).P(B | A) + P(\(\overline A \)).P(B | \(\overline A \))

0,64 = P(A).1 + (1 – P(A)).\(\frac{1}{2}\)

0,64 = P(A) – \(\frac{1}{2}\)P(A) + \(\frac{1}{2}\)

0,14 = \(\frac{1}{2}\)P(A)

P(A) = 0,28.

Vậy xác suất để cặp sinh đôi được chọn là cặp song sinh cùng trứng bằng 0,28.

b) Xác suất để chọn được cặp sinh đôi cùng trứng biết rằng cặp sinh đôi đó cùng giới tính là P(A | B).

Theo công thức nhân xác suất, ta có: P(AB) = P(A).P(B | A).

Ta có, P(A) = 0,28. Theo giả thiết P(B | A) = 1.

Do đó, P(AB) = P(A).P(B | A) = 0,28.

Lại có P(B) = 0,34 + 0,3 = 0,64.

Như vậy, P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,28}}{{0,64}} = 0,4375\).

Lời giải

Đáp án đúng là: B

Kí hiệu G là con gái, T là con trai.

Gọi A là biến cố: “Cả hai là con gái”.

       B là biến cố: “Người con đầu là con gái”.

Lúc này, P(A | B) là xác suất để chọn được gia đình có hai con gái trong đó người con đầu là con gái.

Ta có: B ={GT; GG} n(B) = 2;

         AB = {GG} n(AB) = 1.

Vậy P(B) = \(\frac{1}{2}\), P(AB) = \(\frac{1}{4}\) P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\) = \(\frac{1}{2}\).