Câu hỏi:

22/08/2024 1,255 Lưu

Biết \(\int\limits_1^3 {\frac{{x + 2}}{x}dx} \) = a + blnc, với a, b, c ℝ, c > 0. Tính tổng S = a + b + c.

A. 5.

B. 6.

C. 7.

D. 8.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có: \(\int\limits_1^3 {\frac{{x + 2}}{x}dx} = \int\limits_1^3 {\left[ {\left( {1 + \frac{2}{x}} \right)dx} \right]} = \left. {\left( {x + 2\ln \left| x \right|} \right)} \right|_1^3 = 3 + 2\ln 3 - 1 + 0 = 2 + 2\ln 3\)

Do đó, a = 2, b = 2, c = 3.

Vậy tổng S = a + b + c = 7.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Gọi A là biến cố: “Vận động viên được chọn đội I”.

       B là biến cố: “Vận động viên đạt huy chương vàng”.

Ta có: P(A) = \(\frac{6}{{14}} = \frac{3}{7}\); P(\(\overline A \)) = 1 – P(A) = \(\frac{4}{7}\);

         P(B | A) = 0,65; P(B | \(\overline A \)) = 0,55.

Xác suất để vận động viên được chọn thuộc đội I khi vận động viên ấy đạt huy chương vàng được tính theo công thức Bayes là:

P(A | B) = \(\frac{{P\left( A \right).P\left( {A|B} \right)}}{{P\left( A \right).P\left( {A|B} \right) + P\left( {\overline A } \right).P\left( {A|\overline A } \right)}}\) = \(\frac{{\frac{3}{7}.0,65}}{{\frac{3}{7}.0,65 + \frac{4}{7}0,55}} = \frac{{39}}{{83}}\).

Lời giải

Đáp án đúng là: B

Góc quan sát ngang của một camera là 130°. Trong không gian Oxyz, camera được đặt tại điểm C(1; 2; 2) và chiếu thẳng về phía mặt phẳng (P): x + 2y – 2z + 5 = 0. (ảnh 2)

Gọi H là hình chiếu của C trên mặt phẳng (P).

Khoảng cách từ điểm C tới mặt phẳng (P) là d(C; (P)) = CH = \(\frac{{\left| {1.1 + 2.2 - 2.2 + 5} \right|}}{{\sqrt {{1^2} + {2^2} + {2^2}} }}\) = 2.

Vùng quan sát là hình tròn tâm H bán kính HA.

Ta có tam giác AHC cân tại C có CH vuông với đáy nên \(\widehat {ACH}\) = \(\frac{1}{2}\widehat C\) = 65°.

Do đó, AH = CH.tan65°.

Vậy diện tích vùng quan sát là: π.(CH.tan65°)2 ≈ 57,8.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP