Cho hai mặt phẳng (α): 3x – 2y + 2z + 7 = 0, (β): 5x – 4y + 3z + 1 = 0. Phương trình mặt phẳng đi qua gốc tọa độ O đồng thời vuông góc với cả (α) và (β) là:
A. 2x – y – 2z = 0.
B. 2x – y + 2z = 0.
C. 2x + y – 2z = 0.
D. 2x + y – 2z + 1 = 0.
Cho hai mặt phẳng (α): 3x – 2y + 2z + 7 = 0, (β): 5x – 4y + 3z + 1 = 0. Phương trình mặt phẳng đi qua gốc tọa độ O đồng thời vuông góc với cả (α) và (β) là:
A. 2x – y – 2z = 0.
B. 2x – y + 2z = 0.
C. 2x + y – 2z = 0.
D. 2x + y – 2z + 1 = 0.
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có: \(\overrightarrow {{n_\alpha }} \) = (3; −2; 2), \(\overrightarrow {{n_\beta }} \) = (5; −4; 3) lần lượt là hai vectơ pháp tuyến của mặt phẳng (α) và (β).
\(\overrightarrow n \) = \(\left[ {\overrightarrow {{n_\alpha }} ,\overrightarrow {{n_\beta }} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 2}&2\\{ - 4}&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&3\\3&5\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&{ - 2}\\5&{ - 4}\end{array}} \right|} \right)\) = (2; 1; −2) là vectơ chỉ phương của mặt phẳng chứa O và vuông góc với cả (α) và (β).
Vậy phương trình mặt phẳng cần tìm là: 2(x – 0) + 1(y – 0) – 2(z – 0) = 0
⇒ 2x + y – 2z = 0.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Gọi A là biến cố: “Vận động viên được chọn đội I”.
B là biến cố: “Vận động viên đạt huy chương vàng”.
Ta có: P(A) = \(\frac{6}{{14}} = \frac{3}{7}\); P(\(\overline A \)) = 1 – P(A) = \(\frac{4}{7}\);
P(B | A) = 0,65; P(B | \(\overline A \)) = 0,55.
Xác suất để vận động viên được chọn thuộc đội I khi vận động viên ấy đạt huy chương vàng được tính theo công thức Bayes là:
P(A | B) = \(\frac{{P\left( A \right).P\left( {A|B} \right)}}{{P\left( A \right).P\left( {A|B} \right) + P\left( {\overline A } \right).P\left( {A|\overline A } \right)}}\) = \(\frac{{\frac{3}{7}.0,65}}{{\frac{3}{7}.0,65 + \frac{4}{7}0,55}} = \frac{{39}}{{83}}\).
Lời giải
Đáp án đúng là: B

Gọi H là hình chiếu của C trên mặt phẳng (P).
Khoảng cách từ điểm C tới mặt phẳng (P) là d(C; (P)) = CH = \(\frac{{\left| {1.1 + 2.2 - 2.2 + 5} \right|}}{{\sqrt {{1^2} + {2^2} + {2^2}} }}\) = 2.
Vùng quan sát là hình tròn tâm H bán kính HA.
Ta có tam giác AHC cân tại C có CH vuông với đáy nên \(\widehat {ACH}\) = \(\frac{1}{2}\widehat C\) = 65°.
Do đó, AH = CH.tan65°.
Vậy diện tích vùng quan sát là: π.(CH.tan65°)2 ≈ 57,8.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.