Câu hỏi:
22/08/2024 113Trong không gian Oxyz, cho hai điểm M(1; 0; 1) và N(3; 2; −1). Đường thẳng MN có phương trình tham số là
A. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2t\\z = 1 + t.\end{array} \right.\)
B. \(\left\{ \begin{array}{l}x = 1 + t\\y = t\\z = 1 + t.\end{array} \right.\)
C. \(\left\{ \begin{array}{l}x = 1 + t\\y = t\\z = 1 - t.\end{array} \right.\)
D. \(\left\{ \begin{array}{l}x = 1 - t\\y = t\\z = 1 + t.\end{array} \right.\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có: \(\overrightarrow {MN} \) = (2; 2; −2) = 2(1; 1; −1) chính là vectơ chỉ phương của đường thẳng MN.
Phương trình tham số của đường thẳng MN là: \(\left\{ \begin{array}{l}x = 1 + t\\y = t\\z = 1 - t.\end{array} \right.\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Họ nguyên hàm của hàm số y = \({e^x}\left( {2 + \frac{{{e^{ - x}}}}{{{{\cos }^2}x}}} \right)\) là
A. \(2{e^x} - \frac{1}{{\cos x}} + C\).
B. \(2{e^x} - \tan x + C\).
C. \(2{e^x} + \tan x + C\).
D. \(2{e^x} + \frac{1}{{\cos x}} + C\).
Câu 2:
Giả sử có một loại bệnh mà tỉ lệ người mắc bệnh là 0,01%. Nếu một người mắc bệnh thì xác suất xét nghiệm cho kết quả dương tính là 90%, nếu một người không mắc bệnh thì xác suất cho kết quả dương tính là 5%. Khi một người xét nghiệm có kết quả dương tính thì khả năng mắc bệnh của người đó là bao nhiêu phần trăm?
A. 0,01%.
B. 4,995%.
C. 0,1797%.
D. 0,001%.
Câu 3:
Biết rằng nếu vị trí M có vĩ độ và kinh độ tương ứng là α°N, β°E (0 < α, β < 90) thì có tọa độ M(cosα°cosβ°; cosα°sinβ°; sinα°). Biết 1 đơn vị dài trong không gian Oxyz tương ứng với 6 371 km trong thực tế. Khoảng cách trên mặt đất từ vị trí P: 30°N45°E đến vị trí Q: 60°N45°E là (tính chính xác tới chữ số thập phân thứ tư sau dấu phẩy theo đơn vị kilômét)
A. 3335,8475 km.
B. 3335,8478 km.
C. 3355,8478 km.
D. 3355,8475 km.
Câu 4:
Góc quan sát ngang của một camera là 130°. Trong không gian Oxyz, camera được đặt tại điểm C(1; 2; 2) và chiếu thẳng về phía mặt phẳng (P): x + 2y – 2z + 5 = 0. Hỏi vùng quan sát được trên mặt phẳng (P) của camera là hình tròn có diện tích bằng bao nhiêu? (Làm tròn kết quả đến chữ số hàng thập phân thứ nhất).
A. 57,7.
B. 57,8.
C. 56,7.
D. 56,8.
Câu 5:
Diện tích S của hình phẳng giới hạn bởi các đường y = 2x2, y = −1, x = 0 và x = 1 được tính bởi công thức nào sau đây?
A. S = \(\pi \int\limits_0^1 {\left( {2{x^2} + 1} \right)dx} \).
B. S = \(\int\limits_0^1 {\left( {2{x^2} - 1} \right)dx.} \)
C. S = \(\int\limits_0^1 {{{\left( {2{x^2} + 1} \right)}^2}dx} \)
D. S = \(\int\limits_0^1 {\left( {2{x^2} + 1} \right)dx} \).
Câu 6:
Có hai đội thi đấu môn bắn súng. Đội I có 6 vận động viên, dội II có 8 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên của đội I và đội II tương ứng là 0,65 và 0,55. Chọn ngẫu nhiên một vận động viên trong hai đội. Giả sử vận động viên được chọn đạt huy chương vàng. Tính xác suất để vận động viên này thuộc đội I.
A. \(\frac{{49}}{{140}}\).
B. \(\frac{{39}}{{83}}\).
C. \(\frac{{43}}{{83}}\).
D. \(\frac{{37}}{{140}}\).
Câu 7:
Trong một hộp kín có 10 chiếc bút bi xanh và 6 chiếc bút bi đỏ đều có kích thước và khối lượng như nhau. Bạn Sơn lấy ngẫu nhiên một chiếc bút bi từ trong hộp, không trả lại. Sau đó, bạn tùng lấy ngẫu nhiên một trong 15 chiếc bút còn lại. Tính xác suất bạn Sơn lấy được chiếc bút bi xanh và Tùng lấy được chiếc bút bi đỏ.
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
về câu hỏi!