Một xạ thủ bắn vào bia số 1 và bia số 2. Xác suất để xạ thủ đó bắn trúng bia số 1 là 0,8 và bắn trúng bia số 2 là 0,9. Xác suất để xạ thủ đó bắn trúng cả hai bia là 0,75. Biết xạ thủ đó bắn không trúng bia số 1, xác suất để xạ thủ đó bắn trúng bia số 2 là
A. \(\frac{{41}}{{50}}\).
B. \(\frac{9}{{50}}\).
C. \(\frac{1}{4}\).
D. \(\frac{3}{4}\).
Một xạ thủ bắn vào bia số 1 và bia số 2. Xác suất để xạ thủ đó bắn trúng bia số 1 là 0,8 và bắn trúng bia số 2 là 0,9. Xác suất để xạ thủ đó bắn trúng cả hai bia là 0,75. Biết xạ thủ đó bắn không trúng bia số 1, xác suất để xạ thủ đó bắn trúng bia số 2 là
A. \(\frac{{41}}{{50}}\).
B. \(\frac{9}{{50}}\).
C. \(\frac{1}{4}\).
D. \(\frac{3}{4}\).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Gọi A là biến cố: “Xạ thủ bắn trúng bia số 1”.
B là biến cố: “Xạ thủ bắn trúng bia thứ 2”.
Ta có: P(A) = 0,8; P(B) = 0,9, P(AB) = 0,75.
Biết xạ thủ đó không bắn trúng bia thứ nhất, xác suất để xạ thủ bắn trúng bia thứ hai là:
P(B | \(\overline A \)) = \(\frac{{P\left( {B\overline A } \right)}}{{P\left( {\overline A } \right)}} = \frac{{P\left( B \right) - P\left( {AB} \right)}}{{1 - P\left( A \right)}} = \frac{{0,9 - 0,75}}{{1 - 0,8}} = \frac{3}{4}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Gọi A là biến cố: “Vận động viên được chọn đội I”.
B là biến cố: “Vận động viên đạt huy chương vàng”.
Ta có: P(A) = \(\frac{6}{{14}} = \frac{3}{7}\); P(\(\overline A \)) = 1 – P(A) = \(\frac{4}{7}\);
P(B | A) = 0,65; P(B | \(\overline A \)) = 0,55.
Xác suất để vận động viên được chọn thuộc đội I khi vận động viên ấy đạt huy chương vàng được tính theo công thức Bayes là:
P(A | B) = \(\frac{{P\left( A \right).P\left( {A|B} \right)}}{{P\left( A \right).P\left( {A|B} \right) + P\left( {\overline A } \right).P\left( {A|\overline A } \right)}}\) = \(\frac{{\frac{3}{7}.0,65}}{{\frac{3}{7}.0,65 + \frac{4}{7}0,55}} = \frac{{39}}{{83}}\).
Lời giải
Đáp án đúng là: B

Gọi H là hình chiếu của C trên mặt phẳng (P).
Khoảng cách từ điểm C tới mặt phẳng (P) là d(C; (P)) = CH = \(\frac{{\left| {1.1 + 2.2 - 2.2 + 5} \right|}}{{\sqrt {{1^2} + {2^2} + {2^2}} }}\) = 2.
Vùng quan sát là hình tròn tâm H bán kính HA.
Ta có tam giác AHC cân tại C có CH vuông với đáy nên \(\widehat {ACH}\) = \(\frac{1}{2}\widehat C\) = 65°.
Do đó, AH = CH.tan65°.
Vậy diện tích vùng quan sát là: π.(CH.tan65°)2 ≈ 57,8.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.