Câu hỏi:

22/08/2024 897

Ta đã biết rằng hàm cầu liên quan đến giá p của một sản phẩm mới với nhu cầu của người tiêu dùng, hàm cung liên quan đến giá p của sản phẩm với mức độ sẵn sàng cung cấp sản phẩm của nhà sản xuất. Điểm cắt nhau (x0; p0) của đồ thị hàm cầu y = D(x) và đồ thị hàm cung p = S(x) được gọi là điểm cân bằng. các nhà kinh tế gọi diện tích của hình giới hạn bởi đồ thị hàm cầu, đường ngang p = p0 và đường thẳng đứng x = 0 là thặng dư tiêu dùng. Tương tự, diện tích của hình giới hạn bởi đồ thị của hàm cung, đường nằm ngang p = p0 và đường thẳng đứng x = 0 được gọi là thặng dư sản xuất, như trong hình vẽ sau:

Ta đã biết rằng hàm cầu liên quan đến giá p của một sản phẩm mới với nhu cầu của người tiêu dùng, hàm cung liên quan đến giá p của sản phẩm với mức độ sẵn sàng cung cấp sản phẩm của nhà sản xuất. (ảnh 1)

Giả sử hàm cung và hàm cầu của một loại sản phẩm được mô hình hóa bởi:

Hàm cầu: y = −0,01e2 + 19 và hàm cung: p = 0,09ex + 1 trong đó x là số đơn vị sản phẩm. Thặng dư tiêu dung và thặng dư dản xuất cho sản phẩm này lần lượt là (Làm tròn kết quả đến chữ số thập phân thứ hai).

A. 68,01 và 7,57.

B. 68,02 và 7,56.

C. 69,02 và 7,56.

D. 79,02 và 7,66.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Hoành độ điểm cân bằng là nghiệm của phương trình

−0,01ex + 19 = 0,09ex + 1

0,1ex = 18 x = ln180.

Suy ra tung độ điểm cân bằng y = 0,09eln180 + 1 = 17,2.

Thặng dư sản xuất cho sản phẩm đã cho là:

\(\int\limits_0^{\ln 180} {\left| {17,2 - 0,09{e^x} - 1} \right|dx} \) ≈ 68,02.

Thặng dư tiêu dùng cho sản phẩm đã cho là:

\(\int\limits_0^{\ln 180} {\left| { - 0,01{e^x} + 19 - 17,2} \right|dx} \) ≈ 7,56.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Góc quan sát ngang của một camera là 130°. Trong không gian Oxyz, camera được đặt tại điểm C(1; 2; 2) và chiếu thẳng về phía mặt phẳng (P): x + 2y – 2z + 5 = 0. Hỏi vùng quan sát được trên mặt phẳng (P) của camera là hình tròn có diện tích bằng bao nhiêu? (Làm tròn kết quả đến chữ số hàng thập phân thứ nhất).

Góc quan sát ngang của một camera là 130°. Trong không gian Oxyz, camera được đặt tại điểm C(1; 2; 2) và chiếu thẳng về phía mặt phẳng (P): x + 2y – 2z + 5 = 0. (ảnh 1)

A. 57,7.

B. 57,8.

C. 56,7.

D. 56,8.

Xem đáp án » 22/08/2024 12,083

Câu 2:

Có hai đội thi đấu môn bắn súng. Đội I có 6 vận động viên, dội II có 8 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên của đội I và đội II tương ứng là 0,65 và 0,55. Chọn ngẫu nhiên một vận động viên trong hai đội. Giả sử vận động viên được chọn đạt huy chương vàng. Tính xác suất để vận động viên này thuộc đội I.

A. \(\frac{{49}}{{140}}\).

B. \(\frac{{39}}{{83}}\).

C. \(\frac{{43}}{{83}}\).

D. \(\frac{{37}}{{140}}\).

Xem đáp án » 22/08/2024 10,898

Câu 3:

Diện tích S của hình phẳng giới hạn bởi các đường y = 2x2, y = −1, x = 0 và x = 1 được tính bởi công thức nào sau đây?

A. S = \(\pi \int\limits_0^1 {\left( {2{x^2} + 1} \right)dx} \).

B. S = \(\int\limits_0^1 {\left( {2{x^2} - 1} \right)dx.} \)

C. S = \(\int\limits_0^1 {{{\left( {2{x^2} + 1} \right)}^2}dx} \)

D. S = \(\int\limits_0^1 {\left( {2{x^2} + 1} \right)dx} \).

Xem đáp án » 22/08/2024 9,338

Câu 4:

Họ nguyên hàm của hàm số y = \({e^x}\left( {2 + \frac{{{e^{ - x}}}}{{{{\cos }^2}x}}} \right)\) là

A. \(2{e^x} - \frac{1}{{\cos x}} + C\).

B. \(2{e^x} - \tan x + C\).

C. \(2{e^x} + \tan x + C\).

D. \(2{e^x} + \frac{1}{{\cos x}} + C\).

Xem đáp án » 22/08/2024 9,014

Câu 5:

Giả sử có một loại bệnh mà tỉ lệ người mắc bệnh là 0,01%. Nếu một người mắc bệnh thì xác suất xét nghiệm cho kết quả dương tính là 90%, nếu một người không mắc bệnh thì xác suất cho kết quả dương tính là 5%. Khi một người xét nghiệm có kết quả dương tính thì khả năng mắc bệnh của người đó là bao nhiêu phần trăm?

A. 0,01%.

B. 4,995%.

C. 0,1797%.

D. 0,001%.

Xem đáp án » 22/08/2024 8,056

Câu 6:

Cho hai biến cố A, B sao cho P(A) = 0,4; P(A | B) = 0,7; P(B | A) = 0,3. Tính P(\(\overline B \)).

A. 0,21.

B. 0,28.

C. \(\frac{6}{{35}}\).

D. \(\frac{{29}}{{35}}\).

Xem đáp án » 22/08/2024 4,901

Câu 7:

Có hai chuồng thỏ. Chuồng I có 6 con thỏ đen và 10 con thỏ trắng. Chuồng II có 8 con thỏ đen và 4 con thỏ trắng. Trước tiên, từ chuồng I lấy ra ngẫu nhiên một con thỏ rồi cho vào chuồng II. Sau đó, từ chuồng II lấy ra ngẫu nhiên một con thỏ. Tính xác suất để con thỏ được lấy ra là con thỏ trắng.

A. \(\frac{5}{{13}}\).

B. \(\frac{{37}}{{104}}\).

C. \(\frac{4}{{13}}\).

D. \(\frac{{35}}{{104}}\).

Xem đáp án » 22/08/2024 4,736
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua