Câu hỏi:
22/08/2024 817Một ô tô đang chạy với vận tốc 10 m/s thì người lái đạp phanh; từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) = −5t + 10 (m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?
A. 0,2 m.
B. 2 m.
C. 10 m.
D. 20 m.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Xét v(t) = 0 ⇔ −5t + 10 = 0 ⇔ t = 2.
Do vậy, kể từ lúc người lại đạp phanh thì sau 2 giây ô tô dùng hẳn.
Quãng đường ô tô đi được kể từ lúc người lái đạp phanh đến khi ô tô dừng hẳn là:
s = \(\int\limits_0^2 {\left( { - 5t + 10} \right)dt = \left. {\left( { - \frac{5}{2}{t^2} + 10t} \right)} \right|_0^2} \)= 10 (m).
Đã bán 1,3k
Đã bán 189
Đã bán 1,5k
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Góc quan sát ngang của một camera là 130°. Trong không gian Oxyz, camera được đặt tại điểm C(1; 2; 2) và chiếu thẳng về phía mặt phẳng (P): x + 2y – 2z + 5 = 0. Hỏi vùng quan sát được trên mặt phẳng (P) của camera là hình tròn có diện tích bằng bao nhiêu? (Làm tròn kết quả đến chữ số hàng thập phân thứ nhất).
A. 57,7.
B. 57,8.
C. 56,7.
D. 56,8.
Câu 2:
Diện tích S của hình phẳng giới hạn bởi các đường y = 2x2, y = −1, x = 0 và x = 1 được tính bởi công thức nào sau đây?
A. S = \(\pi \int\limits_0^1 {\left( {2{x^2} + 1} \right)dx} \).
B. S = \(\int\limits_0^1 {\left( {2{x^2} - 1} \right)dx.} \)
C. S = \(\int\limits_0^1 {{{\left( {2{x^2} + 1} \right)}^2}dx} \)
D. S = \(\int\limits_0^1 {\left( {2{x^2} + 1} \right)dx} \).
Câu 3:
Họ nguyên hàm của hàm số y = \({e^x}\left( {2 + \frac{{{e^{ - x}}}}{{{{\cos }^2}x}}} \right)\) là
A. \(2{e^x} - \frac{1}{{\cos x}} + C\).
B. \(2{e^x} - \tan x + C\).
C. \(2{e^x} + \tan x + C\).
D. \(2{e^x} + \frac{1}{{\cos x}} + C\).
Câu 4:
Có hai đội thi đấu môn bắn súng. Đội I có 6 vận động viên, dội II có 8 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên của đội I và đội II tương ứng là 0,65 và 0,55. Chọn ngẫu nhiên một vận động viên trong hai đội. Giả sử vận động viên được chọn đạt huy chương vàng. Tính xác suất để vận động viên này thuộc đội I.
A. \(\frac{{49}}{{140}}\).
B. \(\frac{{39}}{{83}}\).
C. \(\frac{{43}}{{83}}\).
D. \(\frac{{37}}{{140}}\).
Câu 5:
Giả sử có một loại bệnh mà tỉ lệ người mắc bệnh là 0,01%. Nếu một người mắc bệnh thì xác suất xét nghiệm cho kết quả dương tính là 90%, nếu một người không mắc bệnh thì xác suất cho kết quả dương tính là 5%. Khi một người xét nghiệm có kết quả dương tính thì khả năng mắc bệnh của người đó là bao nhiêu phần trăm?
A. 0,01%.
B. 4,995%.
C. 0,1797%.
D. 0,001%.
Câu 6:
Trong một hộp kín có 10 chiếc bút bi xanh và 6 chiếc bút bi đỏ đều có kích thước và khối lượng như nhau. Bạn Sơn lấy ngẫu nhiên một chiếc bút bi từ trong hộp, không trả lại. Sau đó, bạn tùng lấy ngẫu nhiên một trong 15 chiếc bút còn lại. Tính xác suất bạn Sơn lấy được chiếc bút bi xanh và Tùng lấy được chiếc bút bi đỏ.
Câu 7:
Có hai chuồng thỏ. Chuồng I có 6 con thỏ đen và 10 con thỏ trắng. Chuồng II có 8 con thỏ đen và 4 con thỏ trắng. Trước tiên, từ chuồng I lấy ra ngẫu nhiên một con thỏ rồi cho vào chuồng II. Sau đó, từ chuồng II lấy ra ngẫu nhiên một con thỏ. Tính xác suất để con thỏ được lấy ra là con thỏ trắng.
A. \(\frac{5}{{13}}\).
B. \(\frac{{37}}{{104}}\).
C. \(\frac{4}{{13}}\).
D. \(\frac{{35}}{{104}}\).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận