Câu hỏi:
22/08/2024 5,316
Trong không gian Oxyz, cho các đường thẳng:
(d1): \(\frac{{x - 3}}{1} = \frac{{y + 1}}{{ - 2}} = \frac{{z + 1}}{1}\),
(d2): \(\frac{x}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{1}\),
(d3): \(\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 1}}{1}\),
(d4): \(\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 1}}{1}\).
Số đường thẳng trong không gian cắt bốn đường thẳng trên là
A. 1.
B. 2.
C. 0.
D. Vô số.
Trong không gian Oxyz, cho các đường thẳng:
(d1): \(\frac{{x - 3}}{1} = \frac{{y + 1}}{{ - 2}} = \frac{{z + 1}}{1}\),
(d2): \(\frac{x}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{1}\),
(d3): \(\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 1}}{1}\),
(d4): \(\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 1}}{1}\).
Số đường thẳng trong không gian cắt bốn đường thẳng trên là
A. 1.
B. 2.
C. 0.
D. Vô số.
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: d1 // d2 nên hai đường thẳng đó xác định duy nhất một mặt phẳng (P).
Giả sử có đường thẳng d cắt cả 4 đường thẳng đã cho thì d phải thuộc (P).
Ta có d1 có vectơ chỉ phương \(\overrightarrow {{u_1}} \) = (1; −2; 1) và M(3; −1; −1).
d2 có vectơ chỉ phương \(\overrightarrow {{u_2}} \) = (1; −2; 1) và N(0; 0; 1).
Có \(\overrightarrow {MN} \) = (−3; 1; 2).
Vectơ pháp tuyến của (P) là: \(\overrightarrow n \) = \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {MN} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 2}&1\\1&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&1\\2&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&{ - 2}\\{ - 2}&1\end{array}} \right|} \right)\) = (−5; −5; 3)
Phương trình mặt phẳng (P) là:
−5(x – 3) – 5(y + 2) + 3(z – 1) = 0
⇒ 5x + 5y – 3z – 2 = 0.
Nhận thấy d3, d4 luôn cắt (P) tại hai điểm A, B.
Do đó, có duy nhất 1 đường thẳng AB cắt bốn đường thẳng trên.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Gọi A là biến cố: “Vận động viên được chọn đội I”.
B là biến cố: “Vận động viên đạt huy chương vàng”.
Ta có: P(A) = \(\frac{6}{{14}} = \frac{3}{7}\); P(\(\overline A \)) = 1 – P(A) = \(\frac{4}{7}\);
P(B | A) = 0,65; P(B | \(\overline A \)) = 0,55.
Xác suất để vận động viên được chọn thuộc đội I khi vận động viên ấy đạt huy chương vàng được tính theo công thức Bayes là:
P(A | B) = \(\frac{{P\left( A \right).P\left( {A|B} \right)}}{{P\left( A \right).P\left( {A|B} \right) + P\left( {\overline A } \right).P\left( {A|\overline A } \right)}}\) = \(\frac{{\frac{3}{7}.0,65}}{{\frac{3}{7}.0,65 + \frac{4}{7}0,55}} = \frac{{39}}{{83}}\).
Lời giải
Đáp án đúng là: B

Gọi H là hình chiếu của C trên mặt phẳng (P).
Khoảng cách từ điểm C tới mặt phẳng (P) là d(C; (P)) = CH = \(\frac{{\left| {1.1 + 2.2 - 2.2 + 5} \right|}}{{\sqrt {{1^2} + {2^2} + {2^2}} }}\) = 2.
Vùng quan sát là hình tròn tâm H bán kính HA.
Ta có tam giác AHC cân tại C có CH vuông với đáy nên \(\widehat {ACH}\) = \(\frac{1}{2}\widehat C\) = 65°.
Do đó, AH = CH.tan65°.
Vậy diện tích vùng quan sát là: π.(CH.tan65°)2 ≈ 57,8.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.