Câu hỏi:
24/08/2024 402
Chọn phương án đúng.
Gieo con xúc xắc cân đối liên tiếp hai lần. Xác suất để trong hai lần gieo số chấm xuất hiện trên con xúc xắc đều là số nguyên tố là
A. \(\frac{7}{{36}}.\)
B. \(\frac{8}{{35}}.\)
C. \(\frac{3}{8}.\)
D. \(\frac{2}{9}.\)
Chọn phương án đúng.
Gieo con xúc xắc cân đối liên tiếp hai lần. Xác suất để trong hai lần gieo số chấm xuất hiện trên con xúc xắc đều là số nguyên tố là
A. \(\frac{7}{{36}}.\)
B. \(\frac{8}{{35}}.\)
C. \(\frac{3}{8}.\)
D. \(\frac{2}{9}.\)
Quảng cáo
Trả lời:
Đáp án đúng là: D
Không gian mẫu \(\Omega \) gồm các phần tử có dạng (a, b) với a, b lần lượt là số chấm xuất hiện trên con xúc xắc trong 2 lần gieo.
Xúc sắc có 6 mặt tương ứng với số chấm từ 1 đến 6. Sau khi gieo 2 lần, số kết quả có thể là 6.6 = 36.
Vậy tập \(\Omega \) có 36 phần tử.
Ta có biến cố B: “Số chấm xuất hiện trên xúc xắc trong hai lần gieo đều là số nguyên tố”.
Có 6 kết quả thuận lợi cho biến cố B là (2, 2); (2, 3); (2, 5); (3, 2); (3, 3); (3, 5); (5, 2); (5, 3); (5, 5).
Vậy xác suất để trong hai lần gieo số chấm xuất hiện trên con xúc xắc đều là số nguyên tố là \(P\left( B \right) = \frac{8}{{36}} = \frac{2}{9}.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Kí hiệu T và G lần lượt là con trai, con gái.
Không gian mẫu \(\Omega \) = {TT; TG; GT; GG}. Có 4 kết quả có thể là đồng khả năng.
− Có 2 kết quả thuận lợi cho biến cố A là TG; GT. Vậy \(P\left( A \right) = \frac{2}{4} = \frac{1}{2}.\)
− Có 3 kết quả thuận lợi cho biến cố B là TT; TG; GT. Vậy \(P\left( B \right) = \frac{3}{4}.\)
Lời giải
Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:
An Bình |
S |
N |
1 |
(1, S) |
(1, N) |
2 |
(2, S) |
(2, N) |
3 |
(3, S) |
(3, N) |
4 |
(4, S) |
(4, N) |
5 |
(5, S) |
(5, N) |
Mỗi ô ở bảng là một kết quả có thể.
Không gian mẫu là \(\Omega \) = {(1, S); (1, N); (2, S); (2, N); (3, S); (3, N); (4, S); (4, N); (5, S); (5, N)}. Có 10 kết quả có thể là đồng khả năng.
− Có 6 kết quả thuận lợi cho biến cố E là (1, S); (1, N); (3, S); (3, N); (5, S); (5, N). Vậy \(P\left( E \right) = \frac{6}{{10}} = \frac{3}{5}.\)
− Có 2 kết quả thuận lợi cho biến cố F là (2, S); (4, S). Vậy \(P\left( F \right) = \frac{2}{{10}} = \frac{1}{5}.\)
− Có 6 kết quả thuận lợi cho biến cố G là (1, N); (2, N); (3, N); (4, N); (5, S); (5, N). Vậy \(P\left( G \right) = \frac{6}{{10}} = \frac{3}{5}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.