Câu hỏi:

24/08/2024 447

Gieo đồng thời hai con xúc xắc cân đối, đồng chất I và II. Tính xác suất các biến cố sau:

E: “Có đúng một con xúc xắc xuất hiện mặt 6 chấm”;

F: “Có ít nhất một con xúc xắc xuất hiện mặt 6 chấm”;

G: “Tích của hai số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 6”.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Không gian mẫu \(\Omega \) = {(1, 1); (1, 2); (1, 3); (1, 4); (1, 5); (1, 6); (2, 1); (2, 2); (2, 3); (2, 4); (2, 5); (2, 6); (3, 1); (3, 2); (3, 3); (3, 4); (3, 5); (3, 6); (4, 1); (4, 2); (4, 3); (4, 4); (4, 5); (4, 6); (5, 1); (5, 2); (5, 3); (5, 4); (5, 5); (5, 6); (6, 1); (6, 2); (6, 3); (6, 4); (6, 5); (6, 6)}. Tập \(\Omega \) có 36 phần tử.

− Có 10 kết quả thuận lợi cho biến cố E là (1, 6); (2, 6); (3, 6); (4, 6); (5, 6); (6, 1); (6, 2); (6, 3); (6, 4); (6, 5).

Vậy \(P\left( E \right) = \frac{{10}}{{36}} = \frac{5}{{18}}.\)

− Có 11 kết quả thuận lợi cho biến cố F là (1, 6); (2, 6); (3, 6); (4, 6); (5, 6); (6, 1); (6, 2); (6, 3); (6, 4); (6, 5); (6, 6).

Vậy \(P\left( F \right) = \frac{{11}}{{36}}.\)

− Có 14 kết quả thuận lợi cho biến cố G là (1, 1); (1, 2); (1, 3); (1, 4); (1, 5); (1, 6); (2, 1); (2, 2); (2, 3); (3, 1); (3, 2); (4, 1); (5, 1); (6, 1).

Vậy \(P\left( G \right) = \frac{{14}}{{36}} = \frac{7}{{18}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chọn ngẫu nhiên một gia đình có hai con. Giả thiết rằng biến cố “Sinh con trai” và biến cố “Sinh con gái” là đồng khả năng. Tính xác suất của các biến cố sau:

A: “Gia đình đó có cả con trai và con gái”;

B: “Gia đình đó có con trai”.

Xem đáp án » 24/08/2024 545

Câu 2:

Có hai túi I và II mỗi túi chứa 4 tấm thẻ được đánh số 1; 2; 3; 4. Rút ngẫu nhiên từ mỗi túi ra một tấm thẻ và nhân hai số ghi trên hai tấm thẻ với nhau. Tính xác suất của các biến cố sau:

A: “Kết quả là một số lẻ”;

B: “Kết quả là 1 hoặc một số nguyên tố”.

Xem đáp án » 24/08/2024 354

Câu 3:

Bạn An gieo một đồng xu cân đối và bạn Bình rút ngẫu nhiên một tấm thẻ từ hộp chứa 5 tấm thẻ ghi các số 1; 2; 3; 4; 5. Tính xác suất của các biến cố sau:

E: “Rút được tấm thẻ ghi số lẻ”;

F: “Rút được tấm thẻ ghi số chẵn và đồng xu xuất hiện mặt sấp”;

G: “Rút được tấm thẻ ghi số 5 hoặc đồng xu xuất hiện mặt ngửa”.

Xem đáp án » 24/08/2024 271

Câu 4:

Chọn phương án đúng.

Gieo con xúc xắc cân đối liên tiếp hai lần. Xác suất để trong hai lần gieo số chấm xuất hiện trên con xúc xắc đều là số nguyên tố là

A. \(\frac{7}{{36}}.\)

B. \(\frac{8}{{35}}.\)

C. \(\frac{3}{8}.\)

D. \(\frac{2}{9}.\)

Xem đáp án » 24/08/2024 83

Câu 5:

Chọn phương án đúng.

Bạn Sơn gieo một đồng xu cân đối và bạn Minh gieo đồng thời hai đồng xu cân đối. Xác suất để trong ba đồng xu có đúng một đồng xu xuất hiện mặt ngửa là

A. \(\frac{2}{7}.\)

B. \(\frac{1}{3}.\)

C. \(\frac{3}{8}.\)

D. \(\frac{1}{4}.\)

Xem đáp án » 24/08/2024 61

Câu 6:

Có hai tấm bìa cứng hình tròn A và B. Tấm bìa cứng A được chia làm 4 hình quạt như nhau, ghi các số 5, 6, 7, 8. Tấm bìa cứng B được chia làm 5 hình quạt như nhau, ghi các số 1, 2, 3, 4, 5. Mỗi tấm bìa được gắn vào trục quay có mũi tên cố định ở tâm. Bạn An quay tấm bìa A và bạn Bình quay tấm bìa B. Giả sử khi tấm bìa A và B dừng lại, mũi tên tương ứng chỉ vào hình quạt ghi số a và ghi số b. Tính xác suất các biến cố sau:

E: “Trong hai số a và b có ít nhất một số 5”;

F: “Tích ab là số lẻ”.

Xem đáp án » 24/08/2024 46

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store