Gieo đồng thời hai con xúc xắc cân đối, đồng chất I và II. Tính xác suất các biến cố sau:
E: “Có đúng một con xúc xắc xuất hiện mặt 6 chấm”;
F: “Có ít nhất một con xúc xắc xuất hiện mặt 6 chấm”;
G: “Tích của hai số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 6”.
Gieo đồng thời hai con xúc xắc cân đối, đồng chất I và II. Tính xác suất các biến cố sau:
E: “Có đúng một con xúc xắc xuất hiện mặt 6 chấm”;
F: “Có ít nhất một con xúc xắc xuất hiện mặt 6 chấm”;
G: “Tích của hai số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 6”.
Quảng cáo
Trả lời:
Không gian mẫu \(\Omega \) = {(1, 1); (1, 2); (1, 3); (1, 4); (1, 5); (1, 6); (2, 1); (2, 2); (2, 3); (2, 4); (2, 5); (2, 6); (3, 1); (3, 2); (3, 3); (3, 4); (3, 5); (3, 6); (4, 1); (4, 2); (4, 3); (4, 4); (4, 5); (4, 6); (5, 1); (5, 2); (5, 3); (5, 4); (5, 5); (5, 6); (6, 1); (6, 2); (6, 3); (6, 4); (6, 5); (6, 6)}. Tập \(\Omega \) có 36 phần tử.
− Có 10 kết quả thuận lợi cho biến cố E là (1, 6); (2, 6); (3, 6); (4, 6); (5, 6); (6, 1); (6, 2); (6, 3); (6, 4); (6, 5).
Vậy \(P\left( E \right) = \frac{{10}}{{36}} = \frac{5}{{18}}.\)
− Có 11 kết quả thuận lợi cho biến cố F là (1, 6); (2, 6); (3, 6); (4, 6); (5, 6); (6, 1); (6, 2); (6, 3); (6, 4); (6, 5); (6, 6).
Vậy \(P\left( F \right) = \frac{{11}}{{36}}.\)
− Có 14 kết quả thuận lợi cho biến cố G là (1, 1); (1, 2); (1, 3); (1, 4); (1, 5); (1, 6); (2, 1); (2, 2); (2, 3); (3, 1); (3, 2); (4, 1); (5, 1); (6, 1).
Vậy \(P\left( G \right) = \frac{{14}}{{36}} = \frac{7}{{18}}.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Kí hiệu T và G lần lượt là con trai, con gái.
Không gian mẫu \(\Omega \) = {TT; TG; GT; GG}. Có 4 kết quả có thể là đồng khả năng.
− Có 2 kết quả thuận lợi cho biến cố A là TG; GT. Vậy \(P\left( A \right) = \frac{2}{4} = \frac{1}{2}.\)
− Có 3 kết quả thuận lợi cho biến cố B là TT; TG; GT. Vậy \(P\left( B \right) = \frac{3}{4}.\)
Lời giải
Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:
|
An Bình |
S |
N |
|
1 |
(1, S) |
(1, N) |
|
2 |
(2, S) |
(2, N) |
|
3 |
(3, S) |
(3, N) |
|
4 |
(4, S) |
(4, N) |
|
5 |
(5, S) |
(5, N) |
Mỗi ô ở bảng là một kết quả có thể.
Không gian mẫu là \(\Omega \) = {(1, S); (1, N); (2, S); (2, N); (3, S); (3, N); (4, S); (4, N); (5, S); (5, N)}. Có 10 kết quả có thể là đồng khả năng.
− Có 6 kết quả thuận lợi cho biến cố E là (1, S); (1, N); (3, S); (3, N); (5, S); (5, N). Vậy \(P\left( E \right) = \frac{6}{{10}} = \frac{3}{5}.\)
− Có 2 kết quả thuận lợi cho biến cố F là (2, S); (4, S). Vậy \(P\left( F \right) = \frac{2}{{10}} = \frac{1}{5}.\)
− Có 6 kết quả thuận lợi cho biến cố G là (1, N); (2, N); (3, N); (4, N); (5, S); (5, N). Vậy \(P\left( G \right) = \frac{6}{{10}} = \frac{3}{5}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.