Câu hỏi:

24/08/2024 5,116

Một hộp có 30 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 2, 4, 6, …, 60; hai thẻ khác nhau thì ghi hai số khác nhau. Xét phép thử “Rút ngẫu nhiên một thẻ trong hộp”.

a) Liệt kê các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra.

b) Tính xác suất của mỗi biến cố sau:

A: “Số xuất hiện trên thẻ được rút ra lớn hơn 12 và là ước của 60”;

B: “Số xuất hiện trên thẻ được rút ra lớn hơn 2 và chia cho 8 dư 2”;

C: “Số xuất hiện trên thẻ được rút ra chia hết cho cả 3 và 5”.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét phép thử “Rút ngẫu nhiên một thẻ trong hộp”.

Ta thấy, các kết quả xảy ra của phép thử đó là đồng khả năng.

a) Các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra là: 2; 4; 6 ;...; 60.

b) Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra là:

Ω = {2; 4; 6 ;...; 60}. Tập hợp Ω có \(\frac{{60 - 2}}{2} + 1 = 30\) phần tử.

– Các số xuất hiện trên thẻ được rút ra lớn hơn 12 và là ước của 60 là: 20; 30; 60.

Do đó có 3 kết quả thuận lợi cho biến cố A.

Vậy xác suất của biến cố A là \[P\left( A \right) = \frac{3}{{30}} = 10.\]

– Các số xuất hiện trên thẻ được rút ra chia cho 8 dư 2 là: 10; 18; 26; 34; 42; 50; 58. Do đó có 7 kết quả thuận lợi cho biến cố B.

Vậy xác suất của biến cố B là \[P\left( B \right) = \frac{7}{{30}}.\]

– Các số xuất hiện trên thẻ được rút ra là số chia hết cho cả 3 và 5 là: 30; 60.

Do đó có 2 kết quả thuận lợi cho biến cố C.

Vậy xác suất của biến cố C là \[P\left( C \right) = \frac{2}{{30}} = \frac{1}{{15}}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét phép thử: “Lấy ngẫu nhiên đồng thời hai viên bi trong hộp”.

Ta thấy, các kết quả có thể xảy ra của phép thử trên là đồng khả năng.

Kết quả của phép thử là một cặp số (a, b), trong đó a và b tương ứng là số ghi trên viên bi được lấy ra. Do hai viên bi được lấy ra đồng thời nên a ≠ b.

Tập hợp các kết quả có thể xảy ra của phép thử là:

Ω = {(1, 2); (1, 3); (1, 4); (1, 5); (2, 3); (2, 4); (2, 5); (3, 4); (3, 5); (4, 5)}.

Do đó, tập hợp Ω có 10 phần tử.

– Các kết quả để hai viên bi được lấy ra cùng màu vàng là: (1, 2); (1, 3); (2, 3).

Do đó có 3 kết quả thuận lợi cho biến cố A. Vậy \({\rm{P}}\left( A \right) = \frac{3}{{10}}.\)

– Các kết quả để hai viên bi được lấy ra khác màu là: (1, 4); (1, 5); (2, 4); (2, 5); (3, 4); (3, 5).

Do đó có 6 kết quả thuận lợi cho biến cố B. Vậy \(P\left( B \right) = \frac{6}{{10}} = \frac{3}{5}.\)

Lời giải

Tổng số quả cầu trong hộp là: 15 + 5 = 20 quả.

Xét phép thử: “Lấy ngẫu nhiên một quả cầu trong hộp”.

Ta thấy, các kết quả có thể xảy ra của phép thử trên là đồng khả năng.

a) Xác suất của biến cố A: “Quả cầu được lấy ra có màu xanh” là \(P\left( A \right) = \frac{{15}}{{20}} = \frac{3}{4}.\)

b) Các kết quả để lấy ra quả cầu ghi số chẵn là: 2; 4; 6; 8; 10; 12; 14; 16; 18; 20.

Vậy xác suất của biến cố B: “Quả cầu được lấy ra ghi số chẵn” là \(P\left( B \right) = \frac{{10}}{{20}} = \frac{1}{2}.\)

c) Các kết quả để lấy ra quả cầu có màu xanh và ghi số lẻ chia cho 3 dư 1: 1; 7; 13.

Vậy xác suất của biến cố C: “Quả cầu được lấy ra có màu xanh và ghi số lẻ chia cho 3 dư 1” là \(P\left( C \right) = \frac{3}{{20}}.\)

d) Các kết quả để lấy ra quả cầu có màu đỏ hoặc ghi số chẵn là: 2; 4; 6; 8; 10; 12; 14; 16; 17; 18; 19; 20.

Vậy xác suất của biến cố D: “Quả cầu được lấy ra có màu đỏ hoặc ghi số chẵn” là \(P\left( D \right) = \frac{{12}}{{20}} = \frac{3}{5}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay