Câu hỏi:

24/08/2024 778

Một hộp có chứa 15 quả cầu màu xanh được đánh số từ 1 đến 15 và 5 quả cầu màu đỏ được đánh số từ 16 đến 20. Lấy ngẫu nhiên một quả trong hộp. Tính xác suất của mỗi biến cố sau:

a) “Quả cầu được lấy ra có màu xanh”;

b) “Quả cầu được lấy ra ghi số chẵn”;

c) “Quả cầu được lấy ra có màu xanh và ghi số lẻ chia cho 3 dư 1”;

d) “Quả cầu được lấy ra có màu đỏ hoặc ghi số chẵn”.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tổng số quả cầu trong hộp là: 15 + 5 = 20 quả.

Xét phép thử: “Lấy ngẫu nhiên một quả cầu trong hộp”.

Ta thấy, các kết quả có thể xảy ra của phép thử trên là đồng khả năng.

a) Xác suất của biến cố A: “Quả cầu được lấy ra có màu xanh” là \(P\left( A \right) = \frac{{15}}{{20}} = \frac{3}{4}.\)

b) Các kết quả để lấy ra quả cầu ghi số chẵn là: 2; 4; 6; 8; 10; 12; 14; 16; 18; 20.

Vậy xác suất của biến cố B: “Quả cầu được lấy ra ghi số chẵn” là \(P\left( B \right) = \frac{{10}}{{20}} = \frac{1}{2}.\)

c) Các kết quả để lấy ra quả cầu có màu xanh và ghi số lẻ chia cho 3 dư 1: 1; 7; 13.

Vậy xác suất của biến cố C: “Quả cầu được lấy ra có màu xanh và ghi số lẻ chia cho 3 dư 1” là \(P\left( C \right) = \frac{3}{{20}}.\)

d) Các kết quả để lấy ra quả cầu có màu đỏ hoặc ghi số chẵn là: 2; 4; 6; 8; 10; 12; 14; 16; 17; 18; 19; 20.

Vậy xác suất của biến cố D: “Quả cầu được lấy ra có màu đỏ hoặc ghi số chẵn” là \(P\left( D \right) = \frac{{12}}{{20}} = \frac{3}{5}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Viết ngẫu nhiên một số tự nhiên có ba chữ số nhỏ hơn 400.

a) Tính số phần tử của tập hợp Ω gồm các kết quả có thể xảy ra đối với số tự nhiên được viết ra.

b) Tính xác suất của mỗi biến cố sau:

A: “Số tự nhiên được viết ra là lập phương của một số tự nhiên”;

B: “Số tự nhiên được viết ra là số tự nhiên nhỏ nhất và khi chia số đó cho 5; 6; 7 có số dư lần lượt là 3; 2; 1”.

Xem đáp án » 24/08/2024 549

Câu 2:

Một hộp có chứa ba viên bi vàng lần lượt ghi các số 1; 2; 3 và hai viên bi nâu lần lượt ghi các số 4; 5. Lấy ngẫu nhiên đồng thời hai viên bi trong hộp. Tính xác suất của mỗi biến cố sau:

A: “Hai viên bi được lấy ra cùng màu vàng”;

B: “Hai viên bi được lấy ra khác màu”.

Xem đáp án » 24/08/2024 535

Câu 3:

Viết ngẫu nhiên một số tự nhiên có hai chữ số không nhỏ hơn 80.

a) Viết tập hợp Ω gồm các kết quả có thể xảy ra đối với số tự nhiên được viết ra.

b) Tính xác suất của mỗi biến cố sau:

A: “Số tự nhiên được viết ra có chữ số hàng chục lớn hơn chữ số hàng đơn vị”;

B: “Số tự nhiên được viết ra có chữ số hàng chục gấp hai hoặc gấp ba lần chữ số hàng đơn vị̣”.

Xem đáp án » 24/08/2024 378

Câu 4:

Một hộp có 30 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 2, 4, 6, …, 60; hai thẻ khác nhau thì ghi hai số khác nhau. Xét phép thử “Rút ngẫu nhiên một thẻ trong hộp”.

a) Liệt kê các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra.

b) Tính xác suất của mỗi biến cố sau:

A: “Số xuất hiện trên thẻ được rút ra lớn hơn 12 và là ước của 60”;

B: “Số xuất hiện trên thẻ được rút ra lớn hơn 2 và chia cho 8 dư 2”;

C: “Số xuất hiện trên thẻ được rút ra chia hết cho cả 3 và 5”.

Xem đáp án » 24/08/2024 375

Câu 5:

Trên mặt phẳng Oxy cho hình chữ nhật OABC sao cho A(0; 3), B(4; 3), C(4; 0). Gọi Ω là tập hợp tất cả các điểm (x; y) với x, y là các số nguyên và nằm bên trong (không kể trên cạnh) của hình chữ nhật OABC. Lấy ngẫu nhiên một điểm của tập hợp Ω. Tính xác suất của biến cố M: “Điểm (x; y) của tập hợp Ω được lấy ra có x + y < 5”.

Xem đáp án » 24/08/2024 369

Câu 6:

Chọn ngẫu nhiên một vé xổ số có bốn chữ số được lập từ các chữ số từ 0 đến 9. Tính xác suất của biến cố N: “Lấy được vé xổ số không có chữ số 3”.

Xem đáp án » 24/08/2024 330

Bình luận


Bình luận