Câu hỏi:

25/08/2024 106

Cho tam giác ABC và D là một điểm nằm trong tam giác. Kẻ DE song song với AB (E thuộc cạnh AC). Kẻ DF song song với BC (F thuộc cạnh AC).

a) Trong nhóm các điểm B, D, F, C và nhóm các điểm A, B, C, D, nhóm các điểm nào là 4 đỉnh của một tứ giác lồi? Vì sao?

b) Các điểm A, B, C, D, E có phải là các đỉnh của một ngũ giác lồi không? Vì sao?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC và D là một điểm nằm trong tam giác. Kẻ DE song song với AB (E thuộc cạnh AC). Kẻ DF song song với BC (F thuộc cạnh AC). (ảnh 1)

a) Bốn điểm B, D, F, C tạo thành tứ giác BDFC, đây là tứ giác lồi vì tứ giác BDFC nằm về một phía của đường thẳng chứa một cạnh bất kí của tứ giác đó.

Bốn điểm A, B, C, D tạo thành tứ giác ABCD, đây không phải là tứ giác lồi vì tứ giác ABCD nằm về hai phía của đường thẳng AD (hoặc đường thẳng CD).

b) Các điểm A, B, C, D, E tạo thành ngũ giác ABCDE, đây không phải là ngũ giác lồi vì ngũ giác ABCDE nằm về hai phía của đường thẳng CD (hoặc đường thẳng DE).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ngũ giác ABCDE. Chứng minh:

AC + AD + BD + BE + EC > AB + BC + CD + DE + EA.

Xem đáp án » 25/08/2024 320

Câu 2:

Cho ngũ giác đều ABCDE, đoạn BE cắt các đoạn AC và AD lần lượt tại M và N. Chứng minh rằng:

a) Các tam giác AEN và CMB là các tam giác cân;

b) AN là phân giác của góc EAM;

c) AB.BC = BM.AC.

Xem đáp án » 25/08/2024 196

Câu 3:

Cho tam giác đều ABC cạnh a. Vẽ về phía ngoài tam giác ABC các hình chữ nhật ABEF, BCIJ và CAGH sao cho AF = BJ = CH = x. Tìm hệ thức liên hệ giữa a2 và x2 để hình lục giác EFGHIJ là lục giác đều.

Xem đáp án » 25/08/2024 103

Câu 4:

Ở Hình 9 biết ABCDEF là lục giác đều, chứng minh rằng lục giác MNPQRS cũng là lục giác đều.

Ở Hình 9 biết ABCDEF là lục giác đều, chứng minh rằng lục giác MNPQRS cũng là lục giác đều. (ảnh 1)

Xem đáp án » 25/08/2024 95

Câu 5:

Cho ngũ giác đều ABCDE và một điểm M nằm trong ngũ giác. Gọi A’, B’, C’, D’, E’ lần lượt là các điểm nằm trên các đoạn thẳng MA, MB, MC, MD, ME sao cho \(\frac{{MA'}}{{MA}} = \frac{{MB'}}{{MB}} = \frac{1}{3},\,\,\frac{{CC'}}{{MC}} = \frac{{DD'}}{{MD}} = \frac{2}{3},\,\,\frac{{ME'}}{{{E^\prime }E}} = \frac{1}{2}.\) Chứng minh ngũ giác A’B’C’D’E’ là ngũ giác đều.

Xem đáp án » 25/08/2024 88

Câu 6:

Tính số đo mỗi góc của một đa giác đều có n cạnh trong mỗi trường hợp sau:

a) n = 8;

b) n = 9

c) n = 10.

Xem đáp án » 25/08/2024 81

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store