Câu hỏi:

25/08/2024 386

Người ta chia đường tròn (O; R) thành 6 cung bằng nhau như sau:

 – Trên đường tròn (O; R), lấy điểm A tuỳ ý;

 – Vẽ một phần đường tròn (A; R) cắt (O; R) tại B và C;

 – Vẽ một phần đường tròn (C; R) cắt (O; R) tại E (khác A);

 – Vẽ một phần đường tròn (E; R) cắt (O; R) tại F (khác C);

 – Vẽ một phần đường tròn (F; R) cắt (O; R) tại D (khác E).

Nối A với B, B với D, D với F, F với E, E với C, C với A, ta được lục giác ABDFEC.

Chứng minh:

a) Lục giác ABDFEC là lục giác đều;

b) AF, BE, CD là các đường kính của đường tròn (O; R);

c) Các tứ giác ACEF, ABDC, BECA đều là hình thang cân.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Người ta chia đường tròn (O; R) thành 6 cung bằng nhau như sau:  – Trên đường tròn (O; R), lấy điểm A tuỳ ý;  – Vẽ một phần đường tròn (A; R) cắt (O; R) tại B và C (ảnh 1)
a) Nối OA, OB, OC, OD, OE, OF.
Người ta chia đường tròn (O; R) thành 6 cung bằng nhau như sau:  – Trên đường tròn (O; R), lấy điểm A tuỳ ý;  – Vẽ một phần đường tròn (A; R) cắt (O; R) tại B và C (ảnh 2)

⦁ Từ giả thiết ta có sáu cung AB, AC, CE, EF, FD, DB bằng nhau nên \(\widehat {AOB} = \widehat {AOC} = \widehat {COE} = \widehat {EOF} = \widehat {FOD} = \widehat {DOB}.\)

Xét ∆AOB và ∆BOD có:

OA = OB; \(\widehat {AOB} = \widehat {BOD},\) OB = OD.

Do đó ∆AOB = ∆BOD (c.g.c), suy ra AB = BD (hai cạnh tương ứng).

Mặt khác, ta có AB = AC = CE = EF = FD = R.

Nên AB = AC = CE = EF = FD = DB. (1)

⦁ Ta có \(\widehat {AOB} + \widehat {AOC} + \widehat {COE} + \widehat {EOF} + \widehat {FOD} + \widehat {DOB} = 360^\circ \)

Suy ra \(6\widehat {AOB} = 360^\circ ,\) do đó \(\widehat {AOB} = 60^\circ .\)

Xét ∆AOB có OA = OB và \(\widehat {AOB} = 60^\circ \) nên ∆AOB là tam giác đều.

Do đó \(\widehat {OAB} = 60^\circ .\)

Chứng minh tương tự, ta cũng có ∆OAC đều nên \(\widehat {OAC} = 60^\circ .\)

Khi đó, \(\widehat {BAC} = \widehat {OAB} + \widehat {OAC} = 60^\circ  + 60^\circ  = 120^\circ .\)

Tương tự, ta chứng minh được:

\(\widehat {BAC} = \widehat {ACE} = \widehat {CEF} = \widehat {EFD} = \widehat {FDB} = \widehat {DBA} = 120^\circ .\,\,\,\left( 2 \right)\)

Từ (1) và (2) ta có ABDFEC là lục giác đều.

b) Do ABDFEC là lục giác đều nên ba đường chéo AF, BE, CD cắt nhau tại O.

Do đó AF, BE, CD là các đường kính của đường tròm (O; R).

c) Chứng minh tương tự ở câu a, ta chứng minh được ∆AOC, ∆OCE là các tam giác đều. Suy ra \(\widehat {AOC} = \widehat {OCE} = 60^\circ .\)

Mà hai góc này ở vị trí so le trong nên AO // CE hay AF // CE.

Tứ giác ACEF có AF // CE nên là hình thang.

Lại có \[\widehat {ACE} = \widehat {FEC} = 120^\circ \] nên ACEF là hình thang cân.

Chứng minh tương tự, ta cũng có các tứ giác ABDC, BECA đều là hình thang cân.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho ngũ giác đều ABCDE, đoạn BE cắt các đoạn AC và AD lần lượt tại M và N. Chứng minh rằng: a) Các tam giác AEN và CMB là các tam giác cân; b) AN là phân giác của góc EAM; c) AB.BC = BM.AC. (ảnh 1)

a) Ngũ giác ABCDE là ngũ giác đều nên AB = BC = CD = DE = EA và \(\widehat {ABC} = \widehat {BCD} = \widehat {CDE} = \widehat {DEA} = \widehat {EAB}.\)

Ta cũng có tổng 5 góc của ngũ giác đều ABCDE bằng tổng các góc của ba tam giác ABC, ACD, ADE, tức là bằng 3.180° = 540°.

Do đó: \(\widehat {ABC} = \widehat {BCD} = \widehat {CDE} = \widehat {DEA} = \widehat {EAB} = \frac{{540^\circ }}{5} = 108^\circ .\)

Xét ∆AEB cân tại A (do AB = AE) ta có:

\(\widehat {ABE} = \widehat {AEB} = \frac{{180^\circ - \widehat {EAB}}}{2} = \frac{{180^\circ - 108^\circ }}{2} = 36^\circ .\)

Hay \(\widehat {ABM} = \widehat {AEN} = 36^\circ .\)

Tương tự, đối với ∆EAD cân tại E ta có: \[\widehat {EAD} = \widehat {EDA} = 36^\circ \] hay \[\widehat {EAN} = 36^\circ .\]

Do đó ta có \[\widehat {EAN} = \widehat {NEA} = 36^\circ .\] Suy ra ∆AEN cân tại N.

Tương tự, ta chứng minh được ∆MAB cân tại M (do \(\widehat {MAB} = \widehat {MBA} = 36^\circ )\)

Suy ra \(\widehat {AMB} = 180^\circ - 2\widehat {MAB} = 180^\circ - 2 \cdot 36^\circ = 108^\circ .\)

Mặt khác: \(\widehat {CMB} = 180^\circ - \widehat {AMB} = 180^\circ - 108^\circ = 72^\circ ;\)

 \(\widehat {MBC} = \widehat {ABC} - \widehat {ABM} = 108^\circ - 36^\circ = 72^\circ .\)

Suy ra tam giác CMB cân tại C.

b) Ta có: \(\widehat {EAB} = \widehat {EAN} + \widehat {NAM} + \widehat {MAB}\)

Suy ra \(\widehat {NAM} = \widehat {EAB} - \widehat {EAN} - \widehat {MAB} = 108^\circ - 36^\circ - 36^\circ = 36^\circ .\)

Do đó \(\widehat {EAN} = \widehat {NAM} = 36^\circ .\)

Vì vậy AN là phân giác của góc EAM.

c) Xét ∆MAB và ∆BAC có:

\(\widehat {AMB} = \widehat {ABC} = 108^\circ \)\(\widehat {BAC}\) là góc chung

Do đó ∆MAB ∆BAC (g.g), suy ra \(\frac{{AB}}{{AC}} = \frac{{BM}}{{CB}}\) hay AB.BC = BM.AC.

Lời giải

Cho ngũ giác ABCDE. Chứng minh: AC + AD + BD + BE + EC > AB + BC + CD + DE + EA. (ảnh 1)

Áp dụng các bất đẳng thức tam giác ta có:

AF + FE > AE (trong tam giác AEF);

AJ + JB > AB (trong tam giác ABJ);

BI + IC > BC (trong tam giác BCI);

CH + HD > CD (trong tam giác CDH);

GE + GD > ED (trong tam giác GDE).

Do đó, ta có:

AF + FE + AJ + JB + BI + IC + CH + HD + GE + GD > AE + AB + BC + CD + ED. (1)

Mặt khác:

(AF + GD) + (JB + FE) + (AJ + IC) + (BI + HD) + (EG + CH) < AD + BE + AC + BD + EC.

Hay AF + FE + AJ + JB + BI + IC + CH + HD + GE + GD < AB + BC + CD + DE + EA. (2)

Từ (1) và (2) suy ra:

AC + AD + BD + BE + EC > AB + BC + CD + DE + EA.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay