Câu hỏi:
25/08/2024 1,030Cho ngũ giác đều ABCDE, đoạn BE cắt các đoạn AC và AD lần lượt tại M và N. Chứng minh rằng:
a) Các tam giác AEN và CMB là các tam giác cân;
b) AN là phân giác của góc EAM;
c) AB.BC = BM.AC.
Quảng cáo
Trả lời:
a) Ngũ giác ABCDE là ngũ giác đều nên AB = BC = CD = DE = EA và \(\widehat {ABC} = \widehat {BCD} = \widehat {CDE} = \widehat {DEA} = \widehat {EAB}.\)
Ta cũng có tổng 5 góc của ngũ giác đều ABCDE bằng tổng các góc của ba tam giác ABC, ACD, ADE, tức là bằng 3.180° = 540°.
Do đó: \(\widehat {ABC} = \widehat {BCD} = \widehat {CDE} = \widehat {DEA} = \widehat {EAB} = \frac{{540^\circ }}{5} = 108^\circ .\)
Xét ∆AEB cân tại A (do AB = AE) ta có:
\(\widehat {ABE} = \widehat {AEB} = \frac{{180^\circ - \widehat {EAB}}}{2} = \frac{{180^\circ - 108^\circ }}{2} = 36^\circ .\)
Hay \(\widehat {ABM} = \widehat {AEN} = 36^\circ .\)
Tương tự, đối với ∆EAD cân tại E ta có: \[\widehat {EAD} = \widehat {EDA} = 36^\circ \] hay \[\widehat {EAN} = 36^\circ .\]
Do đó ta có \[\widehat {EAN} = \widehat {NEA} = 36^\circ .\] Suy ra ∆AEN cân tại N.
Tương tự, ta chứng minh được ∆MAB cân tại M (do \(\widehat {MAB} = \widehat {MBA} = 36^\circ )\)
Suy ra \(\widehat {AMB} = 180^\circ - 2\widehat {MAB} = 180^\circ - 2 \cdot 36^\circ = 108^\circ .\)
Mặt khác: \(\widehat {CMB} = 180^\circ - \widehat {AMB} = 180^\circ - 108^\circ = 72^\circ ;\)
\(\widehat {MBC} = \widehat {ABC} - \widehat {ABM} = 108^\circ - 36^\circ = 72^\circ .\)
Suy ra tam giác CMB cân tại C.
b) Ta có: \(\widehat {EAB} = \widehat {EAN} + \widehat {NAM} + \widehat {MAB}\)
Suy ra \(\widehat {NAM} = \widehat {EAB} - \widehat {EAN} - \widehat {MAB} = 108^\circ - 36^\circ - 36^\circ = 36^\circ .\)
Do đó \(\widehat {EAN} = \widehat {NAM} = 36^\circ .\)
Vì vậy AN là phân giác của góc EAM.
c) Xét ∆MAB và ∆BAC có:
\(\widehat {AMB} = \widehat {ABC} = 108^\circ \) và \(\widehat {BAC}\) là góc chung
Do đó ∆MAB ᔕ ∆BAC (g.g), suy ra \(\frac{{AB}}{{AC}} = \frac{{BM}}{{CB}}\) hay AB.BC = BM.AC.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ngũ giác ABCDE. Chứng minh:
AC + AD + BD + BE + EC > AB + BC + CD + DE + EA.
Câu 2:
Tính số đo mỗi góc của một đa giác đều có n cạnh trong mỗi trường hợp sau:
a) n = 8;
b) n = 9
c) n = 10.
Câu 3:
Cho hình chữ nhật MNPQ và ngũ giác ABCDE trên lưới ô vuông như Hình 8, với cạnh của mỗi ô vuông nhỏ là 1 cm. Tính tỉ số diện tích ngũ giác ABCDE và diện tích hình chữ nhật MNPQ (làm tròn đến hàng phần mười).
Câu 4:
Cho tam giác ABC và D là một điểm nằm trong tam giác. Kẻ DE song song với AB (E thuộc cạnh AC). Kẻ DF song song với BC (F thuộc cạnh AC).
a) Trong nhóm các điểm B, D, F, C và nhóm các điểm A, B, C, D, nhóm các điểm nào là 4 đỉnh của một tứ giác lồi? Vì sao?
b) Các điểm A, B, C, D, E có phải là các đỉnh của một ngũ giác lồi không? Vì sao?
Câu 5:
Cho tam giác đều ABC cạnh a. Vẽ về phía ngoài tam giác ABC các hình chữ nhật ABEF, BCIJ và CAGH sao cho AF = BJ = CH = x. Tìm hệ thức liên hệ giữa a2 và x2 để hình lục giác EFGHIJ là lục giác đều.
Câu 6:
Ở Hình 9 biết ABCDEF là lục giác đều, chứng minh rằng lục giác MNPQRS cũng là lục giác đều.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 01
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 03
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận