Câu hỏi:

25/08/2024 1,068

Cho ngũ giác đều ABCDE, đoạn BE cắt các đoạn AC và AD lần lượt tại M và N. Chứng minh rằng:

a) Các tam giác AEN và CMB là các tam giác cân;

b) AN là phân giác của góc EAM;

c) AB.BC = BM.AC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho ngũ giác đều ABCDE, đoạn BE cắt các đoạn AC và AD lần lượt tại M và N. Chứng minh rằng: a) Các tam giác AEN và CMB là các tam giác cân; b) AN là phân giác của góc EAM; c) AB.BC = BM.AC. (ảnh 1)

a) Ngũ giác ABCDE là ngũ giác đều nên AB = BC = CD = DE = EA và \(\widehat {ABC} = \widehat {BCD} = \widehat {CDE} = \widehat {DEA} = \widehat {EAB}.\)

Ta cũng có tổng 5 góc của ngũ giác đều ABCDE bằng tổng các góc của ba tam giác ABC, ACD, ADE, tức là bằng 3.180° = 540°.

Do đó: \(\widehat {ABC} = \widehat {BCD} = \widehat {CDE} = \widehat {DEA} = \widehat {EAB} = \frac{{540^\circ }}{5} = 108^\circ .\)

Xét ∆AEB cân tại A (do AB = AE) ta có:

\(\widehat {ABE} = \widehat {AEB} = \frac{{180^\circ - \widehat {EAB}}}{2} = \frac{{180^\circ - 108^\circ }}{2} = 36^\circ .\)

Hay \(\widehat {ABM} = \widehat {AEN} = 36^\circ .\)

Tương tự, đối với ∆EAD cân tại E ta có: \[\widehat {EAD} = \widehat {EDA} = 36^\circ \] hay \[\widehat {EAN} = 36^\circ .\]

Do đó ta có \[\widehat {EAN} = \widehat {NEA} = 36^\circ .\] Suy ra ∆AEN cân tại N.

Tương tự, ta chứng minh được ∆MAB cân tại M (do \(\widehat {MAB} = \widehat {MBA} = 36^\circ )\)

Suy ra \(\widehat {AMB} = 180^\circ - 2\widehat {MAB} = 180^\circ - 2 \cdot 36^\circ = 108^\circ .\)

Mặt khác: \(\widehat {CMB} = 180^\circ - \widehat {AMB} = 180^\circ - 108^\circ = 72^\circ ;\)

 \(\widehat {MBC} = \widehat {ABC} - \widehat {ABM} = 108^\circ - 36^\circ = 72^\circ .\)

Suy ra tam giác CMB cân tại C.

b) Ta có: \(\widehat {EAB} = \widehat {EAN} + \widehat {NAM} + \widehat {MAB}\)

Suy ra \(\widehat {NAM} = \widehat {EAB} - \widehat {EAN} - \widehat {MAB} = 108^\circ - 36^\circ - 36^\circ = 36^\circ .\)

Do đó \(\widehat {EAN} = \widehat {NAM} = 36^\circ .\)

Vì vậy AN là phân giác của góc EAM.

c) Xét ∆MAB và ∆BAC có:

\(\widehat {AMB} = \widehat {ABC} = 108^\circ \)\(\widehat {BAC}\) là góc chung

Do đó ∆MAB ∆BAC (g.g), suy ra \(\frac{{AB}}{{AC}} = \frac{{BM}}{{CB}}\) hay AB.BC = BM.AC.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ngũ giác ABCDE. Chứng minh:

AC + AD + BD + BE + EC > AB + BC + CD + DE + EA.

Xem đáp án » 25/08/2024 725

Câu 2:

Tính số đo mỗi góc của một đa giác đều có n cạnh trong mỗi trường hợp sau:

a) n = 8;

b) n = 9

c) n = 10.

Xem đáp án » 25/08/2024 542

Câu 3:

Cho hình chữ nhật MNPQ và ngũ giác ABCDE trên lưới ô vuông như Hình 8, với cạnh của mỗi ô vuông nhỏ là 1 cm. Tính tỉ số diện tích ngũ giác ABCDE và diện tích hình chữ nhật MNPQ (làm tròn đến hàng phần mười).

Cho hình chữ nhật MNPQ và ngũ giác ABCDE trên lưới ô vuông như Hình 8, với cạnh của mỗi ô vuông nhỏ là 1 cm. Tính tỉ số diện tích ngũ giác ABCDE và diện tích hình chữ nhật MNPQ (làm tròn đến hàng phần mười). (ảnh 1)

Xem đáp án » 25/08/2024 332

Câu 4:

Cho tam giác ABC và D là một điểm nằm trong tam giác. Kẻ DE song song với AB (E thuộc cạnh AC). Kẻ DF song song với BC (F thuộc cạnh AC).

a) Trong nhóm các điểm B, D, F, C và nhóm các điểm A, B, C, D, nhóm các điểm nào là 4 đỉnh của một tứ giác lồi? Vì sao?

b) Các điểm A, B, C, D, E có phải là các đỉnh của một ngũ giác lồi không? Vì sao?

Xem đáp án » 25/08/2024 317

Câu 5:

Ở Hình 9 biết ABCDEF là lục giác đều, chứng minh rằng lục giác MNPQRS cũng là lục giác đều.

Ở Hình 9 biết ABCDEF là lục giác đều, chứng minh rằng lục giác MNPQRS cũng là lục giác đều. (ảnh 1)

Xem đáp án » 25/08/2024 291

Câu 6:

Cho tam giác đều ABC cạnh a. Vẽ về phía ngoài tam giác ABC các hình chữ nhật ABEF, BCIJ và CAGH sao cho AF = BJ = CH = x. Tìm hệ thức liên hệ giữa a2 và x2 để hình lục giác EFGHIJ là lục giác đều.

Xem đáp án » 25/08/2024 284
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay