Câu hỏi:
25/08/2024 333
Cho tam giác đều ABC cạnh a. Vẽ về phía ngoài tam giác ABC các hình chữ nhật ABEF, BCIJ và CAGH sao cho AF = BJ = CH = x. Tìm hệ thức liên hệ giữa a2 và x2 để hình lục giác EFGHIJ là lục giác đều.
Cho tam giác đều ABC cạnh a. Vẽ về phía ngoài tam giác ABC các hình chữ nhật ABEF, BCIJ và CAGH sao cho AF = BJ = CH = x. Tìm hệ thức liên hệ giữa a2 và x2 để hình lục giác EFGHIJ là lục giác đều.
Quảng cáo
Trả lời:

Gọi P là trung điểm của BC và Q là giao điểm của các đường thẳng AP và FG.
Xét ∆ABC đều có AP là đường trung tuyến nên đồng thời là đường phân giác của tam giác.
Do đó: \[\widehat {BAP} = \widehat {PAC} = \frac{1}{2}\widehat {BAC} = \frac{1}{2} \cdot 60^\circ = 30^\circ .\]
Xét ∆AFG cân tại A (do AF = AG = x) nên đường trung tuyến AQ đồng thời là đường phân giác của tam giác. Do đó \(\widehat {FAG} = 2\widehat {FAQ}.\)
Lại có: \[\widehat {FAQ} + \widehat {FAB} + \widehat {BAP} = 180^\circ \]
Nên \[\widehat {FAQ} = 180^\circ - \widehat {FAB} - \widehat {BAP} = 180^\circ - 90^\circ - 30^\circ = 60^\circ .\]
Suy ra \(\widehat {FAG} = 2\widehat {FAQ} = 2 \cdot 60^\circ = 120^\circ .\)
Kẻ GN vuông góc với FA (N thuộc FA).
Tam giác FQA vuông tại Q có \(\widehat {FAQ} = 60^\circ \) và FA = x nên ta có:
\(FQ = FA \cdot \sin \widehat {FAQ} = \frac{{x\sqrt 3 }}{2},\) do đó \(FG = 2FQ = x\sqrt 3 .\)
⦁ Do ABEF, BCIJ và CAGH là các hình chữ nhật nên ta có: AB = EF, BC = IJ, CA = GH, mà AB = BC = CA (do ∆ABC đều) nên nếu EFGHIJ là lục giác đều thì FG = GH = AC = a, do đó \(a = x\sqrt 3 \) hay a2 = 3x2.
Ngược lại, nếu a2 = 3x2 thì FG = a và các cạnh của lục giác EFGHIJ bằng nhau. (1)
⦁ Ta có \(\widehat {AFQ} + \widehat {FAQ} = 90^\circ \) (do ∆AFQ vuông tại Q) nên:
\(\widehat {AFQ} = 90^\circ - \widehat {FAQ} = 90^\circ - 60^\circ = 30^\circ .\)
Suy ra \(\widehat {EFQ} = \widehat {EFA} + \widehat {AFQ} = 90^\circ + 30^\circ = 120^\circ .\)
Tương tự, ta chứng minh được các góc của lục giác EFGHIJ đều bằng 120° nên lục giác EFGHIJ là lục giác đều.
Vậy hệ thức liên hệ giữa a2 và x2 để lục giác EFGHIJ là lục giác đều là a2 = 3x2.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ngũ giác ABCDE là ngũ giác đều nên AB = BC = CD = DE = EA và \(\widehat {ABC} = \widehat {BCD} = \widehat {CDE} = \widehat {DEA} = \widehat {EAB}.\)
Ta cũng có tổng 5 góc của ngũ giác đều ABCDE bằng tổng các góc của ba tam giác ABC, ACD, ADE, tức là bằng 3.180° = 540°.
Do đó: \(\widehat {ABC} = \widehat {BCD} = \widehat {CDE} = \widehat {DEA} = \widehat {EAB} = \frac{{540^\circ }}{5} = 108^\circ .\)
Xét ∆AEB cân tại A (do AB = AE) ta có:
\(\widehat {ABE} = \widehat {AEB} = \frac{{180^\circ - \widehat {EAB}}}{2} = \frac{{180^\circ - 108^\circ }}{2} = 36^\circ .\)
Hay \(\widehat {ABM} = \widehat {AEN} = 36^\circ .\)
Tương tự, đối với ∆EAD cân tại E ta có: \[\widehat {EAD} = \widehat {EDA} = 36^\circ \] hay \[\widehat {EAN} = 36^\circ .\]
Do đó ta có \[\widehat {EAN} = \widehat {NEA} = 36^\circ .\] Suy ra ∆AEN cân tại N.
Tương tự, ta chứng minh được ∆MAB cân tại M (do \(\widehat {MAB} = \widehat {MBA} = 36^\circ )\)
Suy ra \(\widehat {AMB} = 180^\circ - 2\widehat {MAB} = 180^\circ - 2 \cdot 36^\circ = 108^\circ .\)
Mặt khác: \(\widehat {CMB} = 180^\circ - \widehat {AMB} = 180^\circ - 108^\circ = 72^\circ ;\)
\(\widehat {MBC} = \widehat {ABC} - \widehat {ABM} = 108^\circ - 36^\circ = 72^\circ .\)
Suy ra tam giác CMB cân tại C.
b) Ta có: \(\widehat {EAB} = \widehat {EAN} + \widehat {NAM} + \widehat {MAB}\)
Suy ra \(\widehat {NAM} = \widehat {EAB} - \widehat {EAN} - \widehat {MAB} = 108^\circ - 36^\circ - 36^\circ = 36^\circ .\)
Do đó \(\widehat {EAN} = \widehat {NAM} = 36^\circ .\)
Vì vậy AN là phân giác của góc EAM.
c) Xét ∆MAB và ∆BAC có:
\(\widehat {AMB} = \widehat {ABC} = 108^\circ \) và \(\widehat {BAC}\) là góc chung
Do đó ∆MAB ᔕ ∆BAC (g.g), suy ra \(\frac{{AB}}{{AC}} = \frac{{BM}}{{CB}}\) hay AB.BC = BM.AC.
Lời giải

Áp dụng các bất đẳng thức tam giác ta có:
AF + FE > AE (trong tam giác AEF);
AJ + JB > AB (trong tam giác ABJ);
BI + IC > BC (trong tam giác BCI);
CH + HD > CD (trong tam giác CDH);
GE + GD > ED (trong tam giác GDE).
Do đó, ta có:
AF + FE + AJ + JB + BI + IC + CH + HD + GE + GD > AE + AB + BC + CD + ED. (1)
Mặt khác:
(AF + GD) + (JB + FE) + (AJ + IC) + (BI + HD) + (EG + CH) < AD + BE + AC + BD + EC.
Hay AF + FE + AJ + JB + BI + IC + CH + HD + GE + GD < AB + BC + CD + DE + EA. (2)
Từ (1) và (2) suy ra:
AC + AD + BD + BE + EC > AB + BC + CD + DE + EA.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.