Câu hỏi:

25/08/2024 460 Lưu

Cho hình lập phương ABCD.A’B’C’D’ có thể tích bằng 27a3. Hình trụ (T) có hai đáy là hai đường tròn (O), (O’) lần lượt ngoại tiếp hình vuông ABCD và hình vuông A’B’C’D’ (Hình 27). Tính diện tích toàn phần của hình trụ (T) theo a.

Cho hình lập phương ABCD.A’B’C’D’ có thể tích bằng 27a3. Hình trụ (T) có hai đáy là hai đường tròn (O), (O’) lần lượt ngoại tiếp hình vuông ABCD và hình vuông A’B’C’D’ (Hình 27). Tính diện tích toàn phần của hình trụ (T) theo a. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Do hình lập phương ABCD.A’B’C’D’ có thể tích bằng 27a3 nên cạnh hình lập phương là \(\sqrt[3]{{27{a^3}}} = 3a.\)

Suy ra cạnh của hình vuông ABCD là 3a và bán kính của hình trụ bằng bán kính của đường tròn (O) ngoại tiếp hình vuông ABCD và bằng \(\frac{{3a\sqrt 2 }}{2}.\)

Vậy diện tích toàn phần của hình trụ (T) là:

\[2\pi \cdot \frac{{3a\sqrt 2 }}{2} \cdot 3a + 2\pi \cdot {\left( {\frac{{3a\sqrt 2 }}{2}} \right)^2} = 9\pi {a^2}\sqrt 2 + 9\pi {a^2} = 9\pi {a^2}\left( {\sqrt 2 + 1} \right).\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có tổng thể tích của 4 viên bi thuỷ tinh hình cầu có cùng bán kính 3 cm là:

\(4 \cdot \left( {\frac{4}{3}\pi \cdot {3^3}} \right) = 144\pi \) (cm3).

Khi thả vào cốc nước 4 viên bi thuỷ tinh đó thì lượng nước trong cốc cao thêm độ cao h là: \(h = \frac{{144\pi }}{{\pi \cdot {4^2}}} = 9\) (cm).

Vậy sau khi thả vào cốc nước 4 viên bi thuỷ tinh đó, mực nước trong cốc cách miệng cốc một khoảng là: 20 – 9 – 9 = 2 (cm).

Lời giải

Gọi R (cm) và r (cm) lần lượt là bán kính đáy của hình trụ An và Bình đã cuộn (R > 0, r > 0).

Hình trụ An cuộn có chu vi đáy bằng 3a nên ta có 2πR = 3a, suy ra \(R = \frac{{3a}}{{2\pi }}\) (cm).

Hình trụ An cuộn có chu vi đáy bằng a nên ta có 2πr = a, suy ra \(r = \frac{a}{{2\pi }}\) (cm).

Thể tích của hình trụ bạn An cuộn là

\({V_1} = \pi {\left( {\frac{{3a}}{{2\pi }}} \right)^2} \cdot a = \frac{{9{a^3}}}{{4\pi }}\) (cm3).

Thể tích của hình trụ bạn Bình cuộn là

\({V_2} = \pi {\left( {\frac{a}{{2\pi }}} \right)^2} \cdot 3a = \frac{{3{a^3}}}{{4\pi }}\) (cm3).

Do đó, tỉ số của V1 và V2\[\frac{{{V_1}}}{{{V_2}}} = \frac{{\frac{{9{a^3}}}{{4\pi }}}}{{\frac{{3{a^3}}}{{4\pi }}}} = 3.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP