Câu hỏi:

25/08/2024 500 Lưu

Một hình nón có bán kính đáy là 8 cm, đường sinh là 17 cm. Một hình cầu có thể tích bằng thể tích hình nón đó. Tính bán kính hình cầu (theo đơn vị centimét và làm tròn kết quả đến hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có chiều cao của hình nón là: \(\sqrt {{{17}^2} - {8^2}} = \sqrt {289 - 64} = \sqrt {225} = 15\) (cm).

Gọi R là bán kính hình cầu.

Do thể tích hình cầu bằng thể tích hình nón nên ta có:

\(\frac{4}{3}\pi {R^3} = \frac{1}{3} \cdot \pi \cdot {8^2} \cdot 15\) hay R3 = 240.

Do đó \(R = \sqrt[3]{{240}} \approx 6,2\) (cm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có tổng thể tích của 4 viên bi thuỷ tinh hình cầu có cùng bán kính 3 cm là:

\(4 \cdot \left( {\frac{4}{3}\pi \cdot {3^3}} \right) = 144\pi \) (cm3).

Khi thả vào cốc nước 4 viên bi thuỷ tinh đó thì lượng nước trong cốc cao thêm độ cao h là: \(h = \frac{{144\pi }}{{\pi \cdot {4^2}}} = 9\) (cm).

Vậy sau khi thả vào cốc nước 4 viên bi thuỷ tinh đó, mực nước trong cốc cách miệng cốc một khoảng là: 20 – 9 – 9 = 2 (cm).

Lời giải

Gọi R (cm) và r (cm) lần lượt là bán kính đáy của hình trụ An và Bình đã cuộn (R > 0, r > 0).

Hình trụ An cuộn có chu vi đáy bằng 3a nên ta có 2πR = 3a, suy ra \(R = \frac{{3a}}{{2\pi }}\) (cm).

Hình trụ An cuộn có chu vi đáy bằng a nên ta có 2πr = a, suy ra \(r = \frac{a}{{2\pi }}\) (cm).

Thể tích của hình trụ bạn An cuộn là

\({V_1} = \pi {\left( {\frac{{3a}}{{2\pi }}} \right)^2} \cdot a = \frac{{9{a^3}}}{{4\pi }}\) (cm3).

Thể tích của hình trụ bạn Bình cuộn là

\({V_2} = \pi {\left( {\frac{a}{{2\pi }}} \right)^2} \cdot 3a = \frac{{3{a^3}}}{{4\pi }}\) (cm3).

Do đó, tỉ số của V1 và V2\[\frac{{{V_1}}}{{{V_2}}} = \frac{{\frac{{9{a^3}}}{{4\pi }}}}{{\frac{{3{a^3}}}{{4\pi }}}} = 3.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP