Câu hỏi:

25/08/2024 423

Một hình nón có bán kính đáy là 8 cm, đường sinh là 17 cm. Một hình cầu có thể tích bằng thể tích hình nón đó. Tính bán kính hình cầu (theo đơn vị centimét và làm tròn kết quả đến hàng phần mười).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có chiều cao của hình nón là: \(\sqrt {{{17}^2} - {8^2}} = \sqrt {289 - 64} = \sqrt {225} = 15\) (cm).

Gọi R là bán kính hình cầu.

Do thể tích hình cầu bằng thể tích hình nón nên ta có:

\(\frac{4}{3}\pi {R^3} = \frac{1}{3} \cdot \pi \cdot {8^2} \cdot 15\) hay R3 = 240.

Do đó \(R = \sqrt[3]{{240}} \approx 6,2\) (cm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có tổng thể tích của 4 viên bi thuỷ tinh hình cầu có cùng bán kính 3 cm là:

\(4 \cdot \left( {\frac{4}{3}\pi \cdot {3^3}} \right) = 144\pi \) (cm3).

Khi thả vào cốc nước 4 viên bi thuỷ tinh đó thì lượng nước trong cốc cao thêm độ cao h là: \(h = \frac{{144\pi }}{{\pi \cdot {4^2}}} = 9\) (cm).

Vậy sau khi thả vào cốc nước 4 viên bi thuỷ tinh đó, mực nước trong cốc cách miệng cốc một khoảng là: 20 – 9 – 9 = 2 (cm).

Lời giải

Thể tích của khối gỗ hình trụ (T) là: πR2h.

Thể tích của khối gỗ hình nón (N) là: \(\frac{1}{3}\pi \cdot {\left( {\frac{2}{3}R} \right)^2} \cdot h = \frac{4}{{27}}\pi {R^2}h.\)

Thể tích phần còn lại của khối gỗ (T) sau khi khoét bỏ khối gỗ hình nón (N) là

\(\pi {R^2}h - \frac{4}{{27}}\pi {R^2}h = \frac{{23}}{{27}}\pi {R^2}h.\)

Tỉ số phần trăm của khối gỗ (T) sau khi khoét bỏ khối hình nón (N) so với thể tích của khối gỗ (T) ban đầu\(\frac{{\frac{{23}}{{27}}\pi {R^2}h}}{{\pi {R^2}h}} \cdot 100\% \approx 85,2\% .\)

Vậy thể tích phần còn lại của khối gỗ (T) sau khi khoét bỏ khối hình nón (N) bằng khoảng 85,2% thể tích của khối gỗ (T) ban đầu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP