Câu hỏi:

29/08/2024 149

1) Tính \(A = \sqrt 9  + \sqrt {12}  + \sqrt {27}  - 5\sqrt 3 .\)

2) Cho biểu thức \(B = \left( {\frac{1}{{\sqrt x  + 2}} + \frac{1}{{\sqrt x  - 2}}} \right) \cdot \left( {\frac{{\sqrt x }}{{\sqrt x  - 2}} - \frac{4}{{x - 2\sqrt x }}} \right)\) với \(x > 0\) và \(x \ne 4.\)

Rút gọn biểu thức \(B\) và tìm \(x\) để \(B < 0.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) Ta có:

\(A = \sqrt 9  + \sqrt {12}  + \sqrt {27}  - 5\sqrt 3 \)\( = \sqrt {{3^2}}  + \sqrt {{2^2} \cdot 3}  + \sqrt {{3^2} \cdot 3}  - 5\sqrt 3 \)

 \( = 3 + 2\sqrt 3  + 3\sqrt 3  - 5\sqrt 3 \)\( = 3 + \left( {2 + 3 - 5} \right) \cdot \sqrt 3 \)\( = 3.\)

Vậy \(A = 3.\)

2) Với \(x > 0\) và \(x \ne 4,\) ta có:

\(B = \left( {\frac{1}{{\sqrt x  + 2}} + \frac{1}{{\sqrt x  - 2}}} \right) \cdot \left( {\frac{{\sqrt x }}{{\sqrt x  - 2}} - \frac{4}{{x - 2\sqrt x }}} \right)\)

\( = \frac{{\sqrt x  - 2 + \sqrt x  + 2}}{{\left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 2} \right)}} \cdot \left[ {\frac{{\sqrt x }}{{\sqrt x  - 2}} - \frac{4}{{\sqrt x \left( {\sqrt x  - 2} \right)}}} \right]\)

\( = \frac{{2\sqrt x }}{{\left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 2} \right)}} \cdot \frac{{x - 4}}{{\sqrt x \left( {\sqrt x  - 2} \right)}}\)

\( = \frac{{2\sqrt x \left( {x - 4} \right)}}{{\left( {x - 4} \right) \cdot \sqrt x  \cdot \left( {\sqrt x  - 2} \right)}} = \frac{2}{{\sqrt x  - 2}}.\)

Như vậy, với \(x > 0\) và \(x \ne 4,\) thì \(B = \frac{2}{{\sqrt x  - 2}}.\)

Khi đó, để \(B < 0\) thì \(\frac{2}{{\sqrt x  - 2}} < 0,\) tức là \(\sqrt x  - 2 < 0,\) suy ra \(\sqrt x  < 2,\) nên \(x < 4.\)

Đối chiếu điều kiện \(x > 0\) và \(x \ne 4,\) ta được \(0 < x < 4.\)

Vậy với \(0 < x < 4\) thì \(B < 0.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1) Với \(m = 2\) thì phương trình \(\left( * \right)\) trở thành \({x^2} + 6x + 8 = 0.\)

Phương trình trên có \({\rm{\Delta '}} = {3^2} - 1 \cdot 8 = 1 > 0\) và \(\sqrt {\Delta '}  = \sqrt 1  = 1.\)

Do đó, phương trình có hai nghiệm phân biệt là \({x_1} = \frac{{ - 3 + 1}}{1} =  - 2;\,\,{x_2} = \frac{{ - 3 - 1}}{1} =  - 4.\)

Vậy phương trình đã cho có hai nghiệm phân biệt là \({x_1} =  - 2;\,\,{x_2} =  - 4.\)

2) Xét phương trình \({x^2} + 2\left( {m + 1} \right)x + 6m - 4 = 0\,\,\,\left( {\rm{*}} \right)\)

Ta có \({\rm{\Delta '}} = {\left( {m + 1} \right)^2} - \left( {6m - 4} \right) = {m^2} + 2m + 1 - 6m + 4\)

\( = {m^2} - 4m + 5 = {\left( {m - 2} \right)^2} + 1 > 0\) với mọi \(m \in \mathbb{R}.\)

Do đó phương trình \(\left( * \right)\) luôn có hai nghiệm phân biệt \({x_1},{x_2}\) với mọi \(m \in \mathbb{R}.\)

Theo định lí Viète, ta có: \[\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} =  - 2m - 2\,\,\,\,\left( 1 \right)}\\{{x_1}{x_2} = 6m - 4\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)}\end{array}} \right.\]

Do \({x_1}\) là nghiệm của \(\left( * \right)\) nên ta có:

\(x_1^2 + 2\left( {m + 1} \right){x_1} + 6m - 4 = 0\) hay \(x_1^2 + 6{x_1} + 9 = 4{x_1} - 2m{x_1} - 6m + 13\)

Thay vào \(\left( {4{x_1} - 2m{x_1} - 6m + 13} \right)x_2^2 - 24{x_1} - 100 = 0\) ta được

\(\left( {x_1^2 + 6{x_1} + 9} \right)x_2^2 - 24{x_1} - 100 = 0\)

\({\left( {{x_1} + 3} \right)^2}x_2^2 - 24{x_1} - 100 = 0\)

\({\left( {{x_1}{x_2} + 3{x_2}} \right)^2} - 24{x_1} - 100 = 0\) \(\left( {**} \right)\)

Từ \(\left( 1 \right)\) suy ra \(2m =  - 2 - \left( {{x_1} + {x_2}} \right)\) nên \(6m =  - 6 - 3\left( {{x_1} + {x_2}} \right)\)

Thay vào\(\left( 2 \right)\) ta được: \({x_1}{x_2} =  - 6 - 3\left( {{x_1} + {x_2}} \right) - 4,\) hay \[{x_1}{x_2} + 3{x_2} =  - 10 - 3{x_1}.\,\,\,\left( 3 \right)\]

Thay vào \(\left( {**} \right)\) ta được: \({\left( { - 10 - 3{x_1}} \right)^2} - 24{x_1} - 100 = 0\)

 \(9x_1^2 + 60{x_1} + 100 - 24{x_1} - 100 = 0\)

 \(9x_1^2 + 36{x_1} = 0\)

 \(9{x_1}\left( {{x_1} + 4} \right) = 0\)

 \({x_1} = 0\) hoặc \({x_1} =  - 4.\)

Với \({x_1} = 0\) thay vào \(\left( 2 \right)\) ta có \[6m - 4 = 0,\] nên \[m = \frac{2}{3};\]

Với \({x_1} =  - 4\) thay vào \(\left( 3 \right)\) ta có \[\left( { - 4} \right) \cdot {x_2} + 3{x_2} =  - 10 - 3 \cdot \left( { - 4} \right),\] suy ra \[ - {x_2} = 2,\] nên \({x_2} =  - 2.\)

Do đó \({x_1} + {x_2} =  - 6,\) tức là \( - 2m - 2 =  - 6,\) nên \(m = 2.\)

Vậy \(m \in \left\{ {\frac{2}{3};\,\,2} \right\}.\)

Lời giải

1) ⦁ Vẽ đồ thị hàm số \(y =  - 2{x^2}.\)

Ta có bảng giá trị của \(y\) tương ứng với giá trị của \(x\) như sau:

\(x\)

\[--2\]

\[--1\]

\[0\]

\[1\]

\[2\]

\(y =  - 2{x^2}\)

\( - 8\)

\( - 2\)

\[0\]

\( - 2\)

\( - 8\)

 

 

 

Vẽ các điểm \(\left( { - 2; - 8} \right),\) \(\left( { - 1; - 2} \right),\) \(\left( {0;0} \right),\) \(\left( {1; - 2} \right),\) \(\left( {2; - 8} \right)\) thuộc đồ thị của hàm số \(y =  - 2{x^2}\) trong mặt phẳng tọa độ \(Oxy.\)

Vẽ đường parabol đi qua năm điểm trên, ta nhận được đồ thị hàm số \(y =  - 2{x^2}\) (hình vẽ).

⦁ Vẽ đồ thị hàm số \(y =  - 2x - 4.\)

Cho \(x = 0\) ta có \(y =  - 4.\) Đồ thị hàm số đi qua điểm \(A\left( {0; - 4} \right).\)

Đồ thị của hàm số \(y =  - 2{x^2}\) và \(y =  - 2x - 4\) trên cùng một mặt phẳng tọa độ:

Cho \(y = 0\) ta có \(x =  - 2.\) Đồ thị hàm số đi qua điểm \(B\left( { - 2;0} \right).\)

Vẽ đường thẳng đi qua hai điểm \(A\left( {0; - 4} \right)\) và \(B\left( { - 2;0} \right)\) ta được đồ thị hàm số \(y =  - 2x - 4\) (hình vẽ).

Cho hai hàm số y = -2x^2 và y = -2x-4 1) Vẽ đồ thị các hàm số này trên cùng một mặt phẳng tọa độ. 2) Tìm tọa độ hai giao điểm C, D của hai đồ thị đó.  (ảnh 1)

2) ⦁ Gọi \(\left( {{x_0};{y_0}} \right)\) là tọa độ giao điểm (nếu có) của hai đồ thị hàm số \(y =  - 2x - 4\) và \(y =  - 2{x^2},\) khi đó ta có:    \({y_0} =  - 2{x_0} - 4\) và \({y_0} =  - 2x_0^2.\)

Suy ra \( - 2{x_0} - 4 =  - 2x_0^2\) hay \(x_0^2 - {x_0} - 2 = 0.\)

Số giao điểm của hai đồ thị là số nghiệm của phương trình \(x_0^2 - {x_0} - 2 = 0.\,\,\,\left( 1 \right)\)

Ta có: \(a - b + c = 1 - \left( { - 1} \right) + \left( { - 2} \right) = 0\) nên phương trình \(\left( 1 \right)\) có hai nghiệm là \({x_0} =  - 1\) và \({x_0} = 2.\)

Với \({x_0} =  - 1,\) ta có \({y_0} =  - 2 \cdot \left( { - 1} \right) - 4 =  - 2;\)

Với \({x_0} = 2,\) ta có \({y_0} =  - 2 \cdot 2 - 4 =  - 8.\)

Vậy tọa độ giao điểm \(C,\,\,D\) của hai đồ thị là: \(C\left( { - 1; - 2} \right)\) và \(D\left( {2; - 8} \right),\) hoặc \(C\left( {2; - 8} \right)\) và \(D\left( { - 1; - 2} \right).\)

⦁ Khoảng cách từ gốc tọa độ \(O\) đến đường thẳng \(CD\) chính là khoảng cách từ gốc tọa độ \(O\) đến đường thẳng \(y =  - 2x - 4.\)

Gọi \(H\) là chân đường cao kẻ từ \(O\) xuống đường thẳng \[CD,\] ta có \(OH \bot CD.\)

Ta có \(A\left( {0; - 4} \right),\,\,B\left( { - 2;0} \right)\) suy ra \(OA = 4,\,\,OB = 2.\)

Xét \(\Delta OAB\) vuông tại \(O,\) có:

⦁ \(A{B^2} = O{A^2} + O{B^2}\) (định lí Pythagore)

Suy ra \(AB = \sqrt {O{A^2} + O{B^2}}  = \sqrt {{4^2} + {2^2}}  = \sqrt {20}  = 2\sqrt 5 .\)

⦁ \(\sin \widehat {OBA} = \frac{{OA}}{{AB}}.\)

Xét \(\Delta OBH\) vuông tại \(H,\) có: \(\sin \widehat {OBH} = \frac{{OH}}{{OB}}.\)

Suy ra \(\frac{{OA}}{{AB}} = \frac{{OH}}{{OB}},\) do đó \(OH = \frac{{OA \cdot OB}}{{AB}} = \frac{{4 \cdot 2}}{{2\sqrt 5 }} = \frac{{4\sqrt 5 }}{5}.\)

Vậy khoảng cách từ gốc tọa độ \(O\) đến đường thẳng \(CD\) bằng \(\frac{{4\sqrt 5 }}{5}.\)

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay