Câu hỏi:

29/08/2024 815

1) Tổng số tuổi của anh và em bằng 24. Biết rằng anh lớn hơn em 6 tuổi, hãy tính số tuổi của mỗi người.

2) Một xe máy đi từ thành phố Quảng Ngãi đến thành phố Đà Nẵng, quãng đường dài \(120\) km. Sau khi xe máy xuất phát được 30 phút, một ô tô bắt đầu đi từ thành phố Đà Nẵng đến thành phố Quảng Ngãi và gặp xe máy sau khi đã đi được 1 giờ. Tính vận tốc của mỗi xe, biết rằng vận tốc ô tô lớn hơn vận tốc xe máy \(20\) km/h.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) Gọi tuổi em là \(x\,\,\left( {x \in {\mathbb{N}^{\rm{*}}},\,\,0 < x < 24} \right).\)

Do anh hơn em 6 tuổi nên tuổi anh là \(x + 6.\)

Tổng số tuổi của hai anh em là 24 nên ta có phương trình: \(x + \left( {x + 6} \right) = 24.\)

Hay \(2x + 6 = 24,\) suy ra \(2x = 18,\) nên \(x = 9.\)

Vậy tuổi em là 9 tuổi, tuổi anh là \(9 + 6 = 15\) tuổi.

2) Gọi vận tốc xe máy là \(x\) (km/h) \(\left( {x > 0} \right).\)

Khi đó vận tốc ô tô là \(x + 20\) (km/h).

Thời gian xe máy đi từ Quảng Ngãi cho đến khi gặp ô tô là: 1 giờ + 30 phút \[ = 1,5\] giờ.

Quãng đường xe máy đi từ Quảng Ngãi cho đến khi gặp ô tô là: \(1,5x\) (km).

Thời gian ô tô đi từ Đà Nẵng cho đến khi gặp ô tô là 1 giờ.

Quãng đường ô tô đi từ Đà Nẵng cho đến khi gặp ô tô là: \(1 \cdot \left( {x + 20} \right) = x + 20\) (km).

Do quãng đường từ thành phố Quảng Ngãi đến thành phố Đà Nẵng dài \(120{\rm{\;km}}\) nên ta có phương trình: \(1,5x + x + 20 = 120\) hay \(2,5x = 100,\) suy ra \(x = 40\) (thỏa mãn).

Vậy vận tốc của xe máy là \(40\) km/h và vận tốc của ô tô là \(40 + 20 = 60\) km/h.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1) Với \(m = 2\) thì phương trình \(\left( * \right)\) trở thành \({x^2} + 6x + 8 = 0.\)

Phương trình trên có \({\rm{\Delta '}} = {3^2} - 1 \cdot 8 = 1 > 0\) và \(\sqrt {\Delta '}  = \sqrt 1  = 1.\)

Do đó, phương trình có hai nghiệm phân biệt là \({x_1} = \frac{{ - 3 + 1}}{1} =  - 2;\,\,{x_2} = \frac{{ - 3 - 1}}{1} =  - 4.\)

Vậy phương trình đã cho có hai nghiệm phân biệt là \({x_1} =  - 2;\,\,{x_2} =  - 4.\)

2) Xét phương trình \({x^2} + 2\left( {m + 1} \right)x + 6m - 4 = 0\,\,\,\left( {\rm{*}} \right)\)

Ta có \({\rm{\Delta '}} = {\left( {m + 1} \right)^2} - \left( {6m - 4} \right) = {m^2} + 2m + 1 - 6m + 4\)

\( = {m^2} - 4m + 5 = {\left( {m - 2} \right)^2} + 1 > 0\) với mọi \(m \in \mathbb{R}.\)

Do đó phương trình \(\left( * \right)\) luôn có hai nghiệm phân biệt \({x_1},{x_2}\) với mọi \(m \in \mathbb{R}.\)

Theo định lí Viète, ta có: \[\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} =  - 2m - 2\,\,\,\,\left( 1 \right)}\\{{x_1}{x_2} = 6m - 4\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)}\end{array}} \right.\]

Do \({x_1}\) là nghiệm của \(\left( * \right)\) nên ta có:

\(x_1^2 + 2\left( {m + 1} \right){x_1} + 6m - 4 = 0\) hay \(x_1^2 + 6{x_1} + 9 = 4{x_1} - 2m{x_1} - 6m + 13\)

Thay vào \(\left( {4{x_1} - 2m{x_1} - 6m + 13} \right)x_2^2 - 24{x_1} - 100 = 0\) ta được

\(\left( {x_1^2 + 6{x_1} + 9} \right)x_2^2 - 24{x_1} - 100 = 0\)

\({\left( {{x_1} + 3} \right)^2}x_2^2 - 24{x_1} - 100 = 0\)

\({\left( {{x_1}{x_2} + 3{x_2}} \right)^2} - 24{x_1} - 100 = 0\) \(\left( {**} \right)\)

Từ \(\left( 1 \right)\) suy ra \(2m =  - 2 - \left( {{x_1} + {x_2}} \right)\) nên \(6m =  - 6 - 3\left( {{x_1} + {x_2}} \right)\)

Thay vào\(\left( 2 \right)\) ta được: \({x_1}{x_2} =  - 6 - 3\left( {{x_1} + {x_2}} \right) - 4,\) hay \[{x_1}{x_2} + 3{x_2} =  - 10 - 3{x_1}.\,\,\,\left( 3 \right)\]

Thay vào \(\left( {**} \right)\) ta được: \({\left( { - 10 - 3{x_1}} \right)^2} - 24{x_1} - 100 = 0\)

 \(9x_1^2 + 60{x_1} + 100 - 24{x_1} - 100 = 0\)

 \(9x_1^2 + 36{x_1} = 0\)

 \(9{x_1}\left( {{x_1} + 4} \right) = 0\)

 \({x_1} = 0\) hoặc \({x_1} =  - 4.\)

Với \({x_1} = 0\) thay vào \(\left( 2 \right)\) ta có \[6m - 4 = 0,\] nên \[m = \frac{2}{3};\]

Với \({x_1} =  - 4\) thay vào \(\left( 3 \right)\) ta có \[\left( { - 4} \right) \cdot {x_2} + 3{x_2} =  - 10 - 3 \cdot \left( { - 4} \right),\] suy ra \[ - {x_2} = 2,\] nên \({x_2} =  - 2.\)

Do đó \({x_1} + {x_2} =  - 6,\) tức là \( - 2m - 2 =  - 6,\) nên \(m = 2.\)

Vậy \(m \in \left\{ {\frac{2}{3};\,\,2} \right\}.\)

Lời giải

1) ⦁ Vẽ đồ thị hàm số \(y =  - 2{x^2}.\)

Ta có bảng giá trị của \(y\) tương ứng với giá trị của \(x\) như sau:

\(x\)

\[--2\]

\[--1\]

\[0\]

\[1\]

\[2\]

\(y =  - 2{x^2}\)

\( - 8\)

\( - 2\)

\[0\]

\( - 2\)

\( - 8\)

 

 

 

Vẽ các điểm \(\left( { - 2; - 8} \right),\) \(\left( { - 1; - 2} \right),\) \(\left( {0;0} \right),\) \(\left( {1; - 2} \right),\) \(\left( {2; - 8} \right)\) thuộc đồ thị của hàm số \(y =  - 2{x^2}\) trong mặt phẳng tọa độ \(Oxy.\)

Vẽ đường parabol đi qua năm điểm trên, ta nhận được đồ thị hàm số \(y =  - 2{x^2}\) (hình vẽ).

⦁ Vẽ đồ thị hàm số \(y =  - 2x - 4.\)

Cho \(x = 0\) ta có \(y =  - 4.\) Đồ thị hàm số đi qua điểm \(A\left( {0; - 4} \right).\)

Đồ thị của hàm số \(y =  - 2{x^2}\) và \(y =  - 2x - 4\) trên cùng một mặt phẳng tọa độ:

Cho \(y = 0\) ta có \(x =  - 2.\) Đồ thị hàm số đi qua điểm \(B\left( { - 2;0} \right).\)

Vẽ đường thẳng đi qua hai điểm \(A\left( {0; - 4} \right)\) và \(B\left( { - 2;0} \right)\) ta được đồ thị hàm số \(y =  - 2x - 4\) (hình vẽ).

Cho hai hàm số y = -2x^2 và y = -2x-4 1) Vẽ đồ thị các hàm số này trên cùng một mặt phẳng tọa độ. 2) Tìm tọa độ hai giao điểm C, D của hai đồ thị đó.  (ảnh 1)

2) ⦁ Gọi \(\left( {{x_0};{y_0}} \right)\) là tọa độ giao điểm (nếu có) của hai đồ thị hàm số \(y =  - 2x - 4\) và \(y =  - 2{x^2},\) khi đó ta có:    \({y_0} =  - 2{x_0} - 4\) và \({y_0} =  - 2x_0^2.\)

Suy ra \( - 2{x_0} - 4 =  - 2x_0^2\) hay \(x_0^2 - {x_0} - 2 = 0.\)

Số giao điểm của hai đồ thị là số nghiệm của phương trình \(x_0^2 - {x_0} - 2 = 0.\,\,\,\left( 1 \right)\)

Ta có: \(a - b + c = 1 - \left( { - 1} \right) + \left( { - 2} \right) = 0\) nên phương trình \(\left( 1 \right)\) có hai nghiệm là \({x_0} =  - 1\) và \({x_0} = 2.\)

Với \({x_0} =  - 1,\) ta có \({y_0} =  - 2 \cdot \left( { - 1} \right) - 4 =  - 2;\)

Với \({x_0} = 2,\) ta có \({y_0} =  - 2 \cdot 2 - 4 =  - 8.\)

Vậy tọa độ giao điểm \(C,\,\,D\) của hai đồ thị là: \(C\left( { - 1; - 2} \right)\) và \(D\left( {2; - 8} \right),\) hoặc \(C\left( {2; - 8} \right)\) và \(D\left( { - 1; - 2} \right).\)

⦁ Khoảng cách từ gốc tọa độ \(O\) đến đường thẳng \(CD\) chính là khoảng cách từ gốc tọa độ \(O\) đến đường thẳng \(y =  - 2x - 4.\)

Gọi \(H\) là chân đường cao kẻ từ \(O\) xuống đường thẳng \[CD,\] ta có \(OH \bot CD.\)

Ta có \(A\left( {0; - 4} \right),\,\,B\left( { - 2;0} \right)\) suy ra \(OA = 4,\,\,OB = 2.\)

Xét \(\Delta OAB\) vuông tại \(O,\) có:

⦁ \(A{B^2} = O{A^2} + O{B^2}\) (định lí Pythagore)

Suy ra \(AB = \sqrt {O{A^2} + O{B^2}}  = \sqrt {{4^2} + {2^2}}  = \sqrt {20}  = 2\sqrt 5 .\)

⦁ \(\sin \widehat {OBA} = \frac{{OA}}{{AB}}.\)

Xét \(\Delta OBH\) vuông tại \(H,\) có: \(\sin \widehat {OBH} = \frac{{OH}}{{OB}}.\)

Suy ra \(\frac{{OA}}{{AB}} = \frac{{OH}}{{OB}},\) do đó \(OH = \frac{{OA \cdot OB}}{{AB}} = \frac{{4 \cdot 2}}{{2\sqrt 5 }} = \frac{{4\sqrt 5 }}{5}.\)

Vậy khoảng cách từ gốc tọa độ \(O\) đến đường thẳng \(CD\) bằng \(\frac{{4\sqrt 5 }}{5}.\)

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay