Câu hỏi:
29/08/2024 9,874Một cửa hàng xe máy điện cung cấp gói thuê pin theo tháng cho khách hàng dưới hai hình thức như sau:
⦁ Gói linh hoạt: mức giá là \[189\,000\] đồng/tháng, cho phép xe di chuyển tối đa \[400{\rm{ km}}.\] Nếu vượt số ki-lô-mét này, người dùng sẽ trả thêm 374 đồng cho mỗi ki-lô-mét vượt.
⦁ Gói cố định: mức giá là \[350\,\,000\] đồng/tháng, không giới hạn số ki-lô-mét di chuyển.
Trung bình mỗi tháng anh Tâm di chuyển \[800{\rm{ km}}\] bằng xe máy điện. Hỏi anh Tâm nên thuê pin theo hình thức nào thì tiết kiệm hơn? Và tiết kiệm được bao nhiêu tiền mỗi tháng?
Quảng cáo
Trả lời:
Số tiền anh Tâm phải trả khi thuê pin gói linh hoạt là:
\(189\,\,000 + 374\left( {800 - 400} \right) = 338\,\,600\) (đồng)
Do đó nếu sử dụng gói linh hoạt thì anh Tâm sẽ tiết kiệm được:
\(350\,\,000 - 338\,\,600 = 11400\) (đồng).
Vậy anh Tâm nên sử dụng gói linh hoạt.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vì \(AB,\,\,AC\) là tiếp tuyến nên \(\widehat {ABO} = \widehat {ACO} = 90^\circ \).
Xét tứ giác \(ABOC\) có
\(\widehat {ABO} + \widehat {ACO} = 90^\circ + 90^\circ = 180^\circ .\)
Mà hai góc này ở vị trí đối diện nên tứ giác \(ABOC\) nội tiếp.
Ta có \(AB = AC\) (tính chất hai tiếp tuyến cắt nhau); \(OB = OC = R\).
Suy ra \(AO\) là đường trung trực của \(BC\) (đpcm).
b) Do \(K\) là trung điểm \(BC,M\) là trung điểm \(BH\) nên \(KM\) là đường trung bình \(\Delta BCH.\)
Suy ra \(KM\,{\rm{//}}\,CH\) nên \(\widehat {QMK} = \widehat {QPC}\) (đồng vị)
Vì \(\Delta OCQ\) cân tại \(O\) \(\left( {OC = OQ} \right)\) nên \(\widehat {OCQ} = \widehat {OQC}.\)
Suy ra \(\widehat {OCQ} = \widehat {OQC} = \frac{{180^\circ - \widehat {COQ}}}{2} = 90^\circ - \frac{{\widehat {COQ}}}{2}.\)
Vì \[AC\] là tiếp tuyến với đường tròn \[\left( O \right)\] tại điểm \[C\] nên \(OC \bot CA\) hay \(\widehat {OCA} = 90^\circ \).
Suy ra \[\widehat {ACQ} = 90^\circ - \widehat {OCQ}\]\[ = 90^\circ - \left( {90^\circ - \frac{{\widehat {COQ}}}{2}} \right) = \frac{{\widehat {COQ}}}{2}.\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\]
Mặt khác nên \[\widehat {QPC} = \frac{{\widehat {COQ}}}{2}.\,\,\,\,\left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \(\widehat {QCA} = \widehat {QPC}\). Vậy \(\widehat {QMK} = \widehat {QCA}\).
c) Kẻ \(AQ\) cắt \(\left( O \right)\) tại \(E.\)
Xét \(\Delta ACQ\) và \(\Delta AEC\) có \(\widehat {CAE}\) chung; .
Do đó
Suy ra \(\frac{{AC}}{{AE}} = \frac{{AQ}}{{AC}}\) hay AC2 = AE. AQ
Xét \(\Delta ACK\) và \(\Delta AOC\) có \(\widehat {AKC} = \widehat {ACO} = 90^\circ \); \(\widehat {ACK} = \widehat {AOC}\) (cùng phụ \(\widehat {OCK}\,)\).
Do đó .
Suy ra \(\frac{{AC}}{{AK}} = \frac{{AO}}{{AC}}\) hay AC2 = AK. AQ
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(AK \cdot AO = AE \cdot AQ\) hay \(\frac{{AK}}{{AQ}} = \frac{{AE}}{{AO}}\).
Xét \(\Delta AKQ\) và \(\Delta AEO\) có \(\widehat {OAE}\) chung; \(\frac{{AK}}{{AQ}} = \frac{{AE}}{{AO}}\) (chứng minh trên).
Do đó . Suy ra \(\widehat {AKQ} = \widehat {AEO}\).
• Giả sử \(\Delta ABC\) có đường tròn ngoại tiếp tâm \(O\) và đường kính \(AK\) nên tứ giác \(ABCK\) nội tiếp, suy ra \(\widehat {ACB} = \widehat {AKB}\) (hai góc nội tiếp cùng chắn cung \(AB).\)
Mà \(\widehat {ACB} = \widehat {ADB}\) (giả thiết) nên \(\widehat {ADB} = \widehat {AKB}.\) \(\left( 6 \right)\)
⦁ Gọi \(F\) là giao điểm của \(AK\) và \(BD,\) \(F\) nằm trong đường tròn \(\left( O \right).\)
Xét \(\Delta AFD\) và \(\Delta BFK\) có: \(\widehat {AFD} = \widehat {BFK}\) (đối đỉnh) và \(\widehat {ADF} = \widehat {BKF}\) (chứng minh trên)
Do đó suy ra \(\frac{{AF}}{{BF}} = \frac{{DF}}{{KF}}\) nên \(\frac{{AF}}{{DF}} = \frac{{BF}}{{KF}}.\)
Xét \(\Delta DFK\) và \(\Delta AFB\) có: \(\frac{{AF}}{{DF}} = \frac{{BF}}{{KF}}\) và \[\widehat {DFK} = \widehat {AFB}\] (đối đỉnh)
Do đó suy ra \(\widehat {FDK} = \widehat {FAB}.\,\,\,\left( 7 \right)\)
⦁ Ta có \(\widehat {ABK}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat {ABK} = 90^\circ ,\) do đó \(\Delta ABK\) vuông tại \(B,\) suy ra \(\widehat {FAB} + \widehat {AKB} = 90^\circ .\,\,\,\left( 8 \right)\)
Từ \(\left( 6 \right),\,\,\left( 7 \right),\,\,\left( 8 \right)\) suy ra \(\widehat {ADB} + \widehat {FDK} = 90^\circ \) hay \(\widehat {ADK} = 90^\circ .\)
Khi đó \(\Delta ADK\) vuông tại \(D\) nên điểm \(D\) nằm trên đường tròn đường kính \(AK.\)
Suy ra tứ giác \(ABCD\) nội tiếp đường tròn \(\left( O \right)\) đường kính \(AK.\)
Áp dụng bổ đề trên cho tứ giác \(ACKQ\) có \(\widehat {AKQ} = \widehat {AEO}\) nên tứ giác \(ACKQ\) nội tiếp.
Suy ra \(\widehat {AQC} = \widehat {AKC} = 90^\circ \).
Do \(\widehat {AQC} = 90^\circ \) nên \(\widehat {CQE} = 90^\circ \) nên \(CE\) là đường tròn đường kính của \[\left( O \right)\].
Suy ra ba điểm \(E,\,\,O,\,\,C\) thẳng hàng nên \(\widehat {CPQ} = \widehat {CEQ}\).
Ta có \(\tan \widehat {CPQ} = \tan \widehat {CEQ} = \frac{{AC}}{{EC}} = \frac{{AC}}{{2R}}\).
Do đó \(AC = 2R\tan \widehat {ACQ} = 2R\tan \widehat {CPQ}\) (đpcm).
Lời giải
a) Gọi các phần còn lại lần lượt là \(A\) và \(B\) (như hình vẽ).
Biểu thức biểu thị cạnh còn thiếu của \(A\) là: \(20 - y.\)
Biểu thức biểu thị diện tích phần \(A\) là:
\({S_A} = 15\left( {20 - y} \right) = 300 - 15y.\)
Biểu thức biểu thị cạnh còn thiếu của \(B\) là: \(30 - 15 - x = 15 - x.\)
Biểu thức biểu thị diện tích phần \(B\) là: \({S_B} = 20\left( {15 - x} \right) = 300 - 20x.\)
Vậy biểu thức là \(15\left( {20 - y} \right) + 20\left( {15 - x} \right) = 600 - 20x - 15y\).
b) Thay \(x = 2,4\) và \(y = 1,8\) vào \(S,\) ta được:
\(S = 600 - 20 \cdot 2,4 - 15 \cdot 1,8 = 525\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Vậy diện tích phần còn lại của khu vườn là \(525\,\,{{\rm{m}}^{\rm{2}}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
123 bài tập Nón trụ cầu và hình khối có lời giải
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
50 bài tập Một số yếu tố xác suất có lời giải
Đề thi tham khảo môn Toán vào 10 tỉnh Quảng Bình năm học 2025-2026
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_TP Hà Nội
54 bài tập Hàm số bậc hai và giải bài toán bằng cách lập phương trình có lời giải
Đề thi minh họa (Dự thảo) TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đồng Nai
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Bình Phước