Câu hỏi:
29/08/2024 216Giải hệ phương trình \(\left\{ \begin{array}{l}\sqrt {x - 5} + 3{\left( {y - 1} \right)^2} = 4\\2\sqrt {x - 5} + {y^2} - 2y = 2.\end{array} \right.\)
Quảng cáo
Trả lời:
Xét hệ phương trình: \(\left\{ \begin{array}{l}\sqrt {x - 5} + 3{\left( {y - 1} \right)^2} = 4\,\,\,\,\,\,\,\left( 1 \right)\\2\sqrt {x - 5} + {y^2} - 2y = 2\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Điều kiện xác định: \(x \ge 5.\)
Từ phương trình \(\left( 2 \right)\) ta có \(2\sqrt {x - 5} + {y^2} - 2y + 1 = 3\) hay \(2\sqrt {x - 5} + {\left( {y - 1} \right)^2} = 3.\,\,\,\left( 3 \right)\)
Do đó ta có hệ phương trình mới là: \(\left\{ \begin{array}{l}\sqrt {x - 5} + 3{\left( {y - 1} \right)^2} = 4\,\,\,\,\,\,\,\left( 1 \right)\\2\sqrt {x - 5} + {\left( {y - 1} \right)^2} = 3\,\,\,\,\,\,\,\left( 3 \right)\end{array} \right.\)
Nhân cả hai vế của phương trình \(\left( 3 \right)\) với \(3,\) ta được hệ phương trình \(\left\{ \begin{array}{l}\sqrt {x - 5} + 3{\left( {y - 1} \right)^2} = 4\\6\sqrt {x - 5} + 3{\left( {y - 1} \right)^2} = 9.\end{array} \right.\)
Trừ từng vế phương trình thứ hai và phương trình thứ nhất của hệ trên, ta được:
\(5\sqrt {x - 5} = 5,\) suy ra \(\sqrt {x - 5} = 1,\) do đó \(x - 5 = 1\) nên \(x = 6\) (thỏa mãn \(x \ge 5).\)
Thay \(\sqrt {x - 5} = 1\) vào phương trình \(\left( 1 \right),\) ta được: \(1 + 3{\left( {y - 1} \right)^2} = 4,\) nên \({\left( {y - 1} \right)^2} = 1.\)
Do đó \(y - 1 = 1\) hoặc \(y - 1 = - 1\)
Suy ra \(y = 2\) hoặc \(y = 0.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính diện tích của mảnh vườn (phần tô đậm).
2) Cho \(\Delta ABC\) nhọn nội tiếp đường tròn \(\left( O \right),\,\,AB < AC.\) Tiếp tuyến với \(\left( O \right)\) tại \(A\) cắt đường thẳng \(BC\) tại \(M.\) Gọi \(H\) là trung điểm của \(BC.\)
a) Chứng minh rằng các điểm \(A,\,\,O,\,\,H,\,\,M\) cùng nằm trên một đường tròn và \(M{A^2} = MB \cdot MC.\)
b) Từ điểm \(C\) kẻ đường thẳng song song với \(MO\) cắt đường kính \(AD\) của đường tròn \(\left( O \right)\) tại \[K.\] Chứng minh \(HK\) đi qua trung điểm của đoạn thẳng \(CD.\)
Câu 3:
Câu 5:
Câu 6:
1) Chứng minh đẳng thức \(\frac{4}{{\sqrt 5 - \sqrt 3 }} - \sqrt {12} = 2\sqrt 5 .\)
2) Rút gọn biểu thức \(F = \left( {\frac{{\sqrt x }}{{\sqrt x - 1}} - \frac{1}{{x - \sqrt x }}} \right):\left( {\frac{1}{{\sqrt x + 1}} + \frac{2}{{x - 1}}} \right)\) với \(x > 0\) và \(x \ne 1.\)
Câu 7:
Cho phương trình \({x^2} - \left( {2m - 1} \right)x + {m^2} - 1 = 0\) (với \(m\) là tham số).
1) Giải phương trình với \(m = 1.\)
2) Tìm tất cả các giá trị của \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn:
\(\left( {{x_1} - 2{x_2}} \right)\left( {{x_2} - 2{x_1}} \right) = 9.\)
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
123 bài tập Nón trụ cầu và hình khối có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận