Câu hỏi:
29/08/2024 58Giải hệ phương trình \(\left\{ \begin{array}{l}\sqrt {x - 5} + 3{\left( {y - 1} \right)^2} = 4\\2\sqrt {x - 5} + {y^2} - 2y = 2.\end{array} \right.\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét hệ phương trình: \(\left\{ \begin{array}{l}\sqrt {x - 5} + 3{\left( {y - 1} \right)^2} = 4\,\,\,\,\,\,\,\left( 1 \right)\\2\sqrt {x - 5} + {y^2} - 2y = 2\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Điều kiện xác định: \(x \ge 5.\)
Từ phương trình \(\left( 2 \right)\) ta có \(2\sqrt {x - 5} + {y^2} - 2y + 1 = 3\) hay \(2\sqrt {x - 5} + {\left( {y - 1} \right)^2} = 3.\,\,\,\left( 3 \right)\)
Do đó ta có hệ phương trình mới là: \(\left\{ \begin{array}{l}\sqrt {x - 5} + 3{\left( {y - 1} \right)^2} = 4\,\,\,\,\,\,\,\left( 1 \right)\\2\sqrt {x - 5} + {\left( {y - 1} \right)^2} = 3\,\,\,\,\,\,\,\left( 3 \right)\end{array} \right.\)
Nhân cả hai vế của phương trình \(\left( 3 \right)\) với \(3,\) ta được hệ phương trình \(\left\{ \begin{array}{l}\sqrt {x - 5} + 3{\left( {y - 1} \right)^2} = 4\\6\sqrt {x - 5} + 3{\left( {y - 1} \right)^2} = 9.\end{array} \right.\)
Trừ từng vế phương trình thứ hai và phương trình thứ nhất của hệ trên, ta được:
\(5\sqrt {x - 5} = 5,\) suy ra \(\sqrt {x - 5} = 1,\) do đó \(x - 5 = 1\) nên \(x = 6\) (thỏa mãn \(x \ge 5).\)
Thay \(\sqrt {x - 5} = 1\) vào phương trình \(\left( 1 \right),\) ta được: \(1 + 3{\left( {y - 1} \right)^2} = 4,\) nên \({\left( {y - 1} \right)^2} = 1.\)
Do đó \(y - 1 = 1\) hoặc \(y - 1 = - 1\)
Suy ra \(y = 2\) hoặc \(y = 0.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính diện tích của mảnh vườn (phần tô đậm).
2) Cho \(\Delta ABC\) nhọn nội tiếp đường tròn \(\left( O \right),\,\,AB < AC.\) Tiếp tuyến với \(\left( O \right)\) tại \(A\) cắt đường thẳng \(BC\) tại \(M.\) Gọi \(H\) là trung điểm của \(BC.\)
a) Chứng minh rằng các điểm \(A,\,\,O,\,\,H,\,\,M\) cùng nằm trên một đường tròn và \(M{A^2} = MB \cdot MC.\)
b) Từ điểm \(C\) kẻ đường thẳng song song với \(MO\) cắt đường kính \(AD\) của đường tròn \(\left( O \right)\) tại \[K.\] Chứng minh \(HK\) đi qua trung điểm của đoạn thẳng \(CD.\)
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Hệ phương trình \(\left\{ \begin{array}{l}x - 2y = 5\\2x + y = - 5\end{array} \right.\) có nghiệm \(\left( {x;y} \right)\) là
về câu hỏi!