Câu hỏi:

29/08/2024 53

1) Giải phương trình \(2\left( {{x^2} - 3x + 2} \right) = 3\sqrt {{x^3} + 8} .\)

2) Cho các số thực dương \(x,\,\,y\) thỏa mãn \(x + y \le 2.\) Tìm giá trị nhỏ nhất của biểu thức

\(P = \frac{3}{{{x^2} + {y^2}}} + \frac{{10}}{{xy}} + 8xy + 3.\)

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) Điều kiện xác định:

\({x^3} + 8 \ge 0,\) hay \(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) \ge 0,\) nên \(x \ge - 2\) (do \({x^2} - 2x + 4 > 0\) với mọi \(x \in \mathbb{R}).\)

Ta có: \(2\left( {{x^2} - 3x + 2} \right) = 3\sqrt {{x^3} + 8} \)

 \(2\left( {{x^2} - 2x + 4} \right) - 2\left( {x + 2} \right) = 3\sqrt {x + 2} \cdot \sqrt {{x^2} - 2x + 4} .\)

Đặt \(u = \sqrt {{x^2} - 2x + 4} \ge \sqrt 3 \) và \(v = \sqrt {x + 2} \ge 0.\)

Ta được phương trình: \(2{u^2} - 2{v^2} = 3uv\)

 \(\left( {2u + v} \right)\left( {u - 2v} \right) = 0\)

\(u = 2v\) (vì \(u \ge \sqrt 3 ,v \ge 0\) nên \(2u + v > 0).\)

Suy ra \(\sqrt {{x^2} - 2x + 4} = 2\sqrt {x + 2} \)

\({x^2} - 2x + 4 = 4\left( {x + 2} \right)\)

\({x^2} - 6x - 4 = 0\)

\(x = 3 + \sqrt {13} \) hoặc \(x = 3 - \sqrt {13} .\)

Ta thấy các giá trị của \(x\) tìm được ở trên đều thỏa mãn điều kiện \(x \ge - 2.\)

Vậy phương trình có hai nghiệm là \(x = 3 + \sqrt {13} ;\,\,x = 3 - \sqrt {13} .\)

2) Ta có: \(P = \frac{3}{{{x^2} + {y^2}}} + \frac{{10}}{{xy}} + 8xy + 3.\)

Theo bất đẳng thức AM-GM, ta có: \[xy \le \frac{{{{\left( {x + y} \right)}^2}}}{4} = \frac{{{2^2}}}{4} = 1.\]

Chng minh b đề: Với hai số thực dương \(a,\,\,b\) ta luôn có \(\frac{1}{a} + \frac{1}{b} \ge \frac{4}{{a + b}}.\)

Theo bất đẳng thức Cauchy, ta có: \(a + b \ge 2\sqrt {ab} ;\,\,\frac{1}{a} + \frac{1}{b} \ge \frac{2}{{\sqrt {ab} }}.\)

Suy ra \(\left( {a + b} \right)\left( {\frac{1}{a} + \frac{1}{b}} \right) \ge 2\sqrt {ab} \cdot \frac{2}{{\sqrt {ab} }} = 4.\)

Do đó \(\left( {\frac{1}{a} + \frac{1}{b}} \right) \ge \frac{4}{{a + b}}.\) 

Theo bổ đề trên, ta có:

\(P = \frac{3}{{{x^2} + {y^2}}} + \frac{{10}}{{xy}} + 8xy + 3 = \frac{3}{{{x^2} + {y^2}}} + \frac{3}{{2xy}} + 8xy + \frac{8}{{xy}} + \frac{1}{{2xy}} + 3\)

\( \ge \frac{{3 \cdot 4}}{{{x^2} + {y^2} + 2xy}} + 2 \cdot \sqrt {8xy \cdot \frac{8}{{xy}}} + \frac{1}{2} + 3 = \frac{{12}}{{{{\left( {x + y} \right)}^2}}} + 2 \cdot 8 + \frac{1}{2} + 3\)

\( \ge \frac{{12}}{{{2^2}}} + 16 + \frac{1}{2} + 3 = \frac{{45}}{2}.\)

Dấu bằng xảy ra khi và chỉ khi \(x = y = 1.\)

Vậy giá trị nhỏ nhất của \(P\) bằng \(\frac{{45}}{2}\) khi \(x = y = 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

1) Mảnh vườn nhà ông An có hình dạng là tứ giác \(ABCD\) (như hình vẽ). Biết \(AB\) vuông góc với \(CD\) tại \(H;\) \(AB = 4{\rm{\;m;}}\) \(BC = 26{\rm{\;m}};\) \(CD = 16{\rm{\;m;}}\) \(\sin \widehat {BCD} = \frac{5}{{13}}.\)
1) Mảnh vườn nhà ông An có hình dạng là tứ giác ABCD (như hình vẽ). Biết AB vuông góc với CD tại H AB = 4m BC = 36m CD= 16m  (ảnh 1)

Tính diện tích của mảnh vườn (phần tô đậm).

2) Cho \(\Delta ABC\) nhọn nội tiếp đường tròn \(\left( O \right),\,\,AB < AC.\) Tiếp tuyến với \(\left( O \right)\) tại \(A\) cắt đường thẳng \(BC\) tại \(M.\) Gọi \(H\) là trung điểm của \(BC.\)

a) Chứng minh rằng các điểm \(A,\,\,O,\,\,H,\,\,M\) cùng nằm trên một đường tròn và \(M{A^2} = MB \cdot MC.\)

b) Từ điểm \(C\) kẻ đường thẳng song song với \(MO\) cắt đường kính \(AD\) của đường tròn \(\left( O \right)\) tại \[K.\] Chứng minh \(HK\) đi qua trung điểm của đoạn thẳng \(CD.\)

Xem đáp án » 29/08/2024 1,524

Câu 2:

Điều kiện xác định của biểu thức \(\frac{5}{{\sqrt x  - 3}}\) là

Xem đáp án » 29/08/2024 249

Câu 3:

Cho tam giác \(ABC\) vuông tại \(A\) có \(AB = 4{\rm{\;cm}}\) và \(AC = 4\sqrt 3 {\rm{\;cm}}.\) Đường tròn ngoại tiếp tam giác \(ABC\) có chu vi bằng 

Xem đáp án » 29/08/2024 172

Câu 4:

Giải hệ phương trình \(\left\{ \begin{array}{l}\sqrt {x - 5} + 3{\left( {y - 1} \right)^2} = 4\\2\sqrt {x - 5} + {y^2} - 2y = 2.\end{array} \right.\)

Xem đáp án » 29/08/2024 96

Câu 5:

Cho đường tròn \(\left( O \right)\) và điểm \(A\) nằm ngoài đường tròn, kẻ hai tiếp tuyến \(AB,\,\,AC\) với đường tròn \(\left( O \right)\) (với \(B,\,\,C\) là các tiếp điểm), biết \(\widehat {BAC} = 50^\circ .\) Số đo cung nhỏ \(BC\) là 

Xem đáp án » 29/08/2024 89

Câu 6:

1) Chứng minh đẳng thức \(\frac{4}{{\sqrt 5  - \sqrt 3 }} - \sqrt {12}  = 2\sqrt 5 .\)

2) Rút gọn biểu thức \(F = \left( {\frac{{\sqrt x }}{{\sqrt x  - 1}} - \frac{1}{{x - \sqrt x }}} \right):\left( {\frac{1}{{\sqrt x  + 1}} + \frac{2}{{x - 1}}} \right)\) với \(x > 0\) và \(x \ne 1.\)

Xem đáp án » 29/08/2024 89

Câu 7:

Phương trình nào sau đây có tổng hai nghiệm bằng 3? 

Xem đáp án » 29/08/2024 79

Bình luận


Bình luận