Câu hỏi:
29/08/2024 326Không sử dụng máy tính cầm tay:
1) Rút gọn biểu thức \(A = \sqrt {36} + \sqrt 9 - \sqrt {81} \).
2) Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{r}}{x + 3y = 6}\\{2x - 3y = 3}\end{array}} \right.\).
3) Giải phương trình \(3{x^2} - 7x + 4 = 0\).
Quảng cáo
Trả lời:
a) \(A = \sqrt {36} + \sqrt 9 - \sqrt {81} \)\( = \sqrt {{6^2}} + \sqrt {{3^2}} - \sqrt {{9^2}} \)\( = 6 + 3 - 9 = 0\).
Vậy \(A = 0\).
b) \(\left\{ {\begin{array}{*{20}{l}}{x + 3y = 6}\\{2x - 3y = 3}\end{array}} \right.\). Cộng từng vế của phương trình mới, ta được: \(3x = 9\), tức là \[x = 3.\]
Thế \[x = 3\] vào phương trình \(x + 3y = 6\) ta có: \(3 + 3y = 6\) nên \(3y = 3\) hay \[y = 1.\]
Vậy hệ phương trình có nghiệm duy nhất \(\left( {x\,;\,\,y} \right) = \left( {3\,;\,\,1} \right).\)
c) \(3{x^2} - 7x + 4 = 0\).
Cách 1: Ta có \(a + b + c = 3 + \left( { - 7} \right) + 4 = 0\).
Do đó phương trình đã cho có hai nghiệm phân biệt: \(x = 1\,;\,\,x = \frac{c}{a} = \frac{4}{3}.\)
Cách 2: Ta có \(\Delta = {b^2} - 4ac = {\left( { - 7} \right)^2} - 4 \cdot 3 \cdot 4 = 1 > 0.\)
Do đó phương trình có hai nghiệm phân biệt:
\(x = \frac{{ - b + \sqrt {\rm{\Delta }} }}{{2a}} = \frac{{7 + \sqrt 1 }}{{2 \cdot 3}} = \frac{4}{3}\,;\,\,x = \frac{{ - b - \sqrt {\rm{\Delta }} }}{{2a}} = \frac{{7 - \sqrt 1 }}{{2 \cdot 3}} = 1.\)
Vậy phương trình có hai nghiệm phân biệt: \(x = 1\,;\,\,x = \frac{4}{3}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) Chứng minh tứ giác \(MAOB\) nội tiếp đường tròn.
Vì \(MA,\,\,MB\) là tiếp tuyến của đường tròn \(\left( O \right)\) (với \(A,B\) là các tiếp điểm) nên
\(MA \bot OA\,,\,\,MB \bot OB\)
Hay \(\widehat {OAM} = \widehat {OBM} = 90^\circ \).
Xét tứ giác \(MAOB\) có
\(\widehat {OAM} + \widehat {OBM} = 90^\circ + 90^\circ = 180^\circ \).
Mà hai góc này ở vị trí đối diện nên tứ giác \(MAOB\) nội tiếp đường tròn.
2) Chứng minh \(\widehat {AEB} = \widehat {BEM}\).
Vì \(AC\,{\rm{//}}\,MB\,\,\left( {{\rm{gt}}} \right)\) nên \(\widehat {ACE} = \widehat {BME}\) (so le trong)
Mà \(\widehat {ACE} = \widehat {ABE}\) (góc nội tiếp cùng chắn cung \(AE)\), suy ra \(\widehat {ABE} = \widehat {BME}{\rm{.\;}}\)
Vì \(\Delta OBE\) cân tại \(O\) \(\left( {OB = OE} \right)\) nên \(\widehat {OBE} = \widehat {OEB}.\)
Suy ra \(\widehat {OBE} = \widehat {OEB} = \frac{{180^\circ - \widehat {BOE}}}{2} = 90^\circ - \frac{{\widehat {BOE}}}{2}.\)
Vì \[MB\] là tiếp tuyến với đường tròn \[\left( O \right)\] tại điểm \[B\] nên \(OB \bot MB\) hay \(\widehat {OBM} = 90^\circ .\)
Suy ra \[\widehat {MBE} = 90^\circ - \widehat {OBE}\]\[ = 90^\circ - \left( {90^\circ - \frac{{\widehat {BOE}}}{2}} \right) = \frac{{\widehat {BOE}}}{2}.\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\]
Mặt khác nên \[\widehat {BAE} = \frac{{\widehat {BOE}}}{2}.\,\,\,\,\left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \(\widehat {BAE} = \widehat {MBE}\).
Xét \(\Delta ABE\) và \(\Delta BME\) có: \(ABE = BME\,\,\left( {{\rm{cmt}}} \right)\); \(\widehat {BAE} = \widehat {MBE}\,\,\left( {{\rm{cmt}}} \right)\).
Do đó . Suy ra \(\widehat {AEB} = \widehat {BEM}\) (hai góc tương ứng) (đpcm).
3) Chứng minh \(ME \cdot MC = MH \cdot MO\) và ba điểm \(C,\,\,H,\,\,I\) thẳng hàng.
Chứng minh \(ME \cdot MC = MH \cdot MO\).
Vì \(\Delta OAE\) cân tại \(O\) \(\left( {OA = OE} \right)\) nên \(\widehat {OAE} = \widehat {OEA}.\)
Suy ra \(\widehat {OAE} = \widehat {OEA} = \frac{{180^\circ - \widehat {AOE}}}{2} = 90^\circ - \frac{{\widehat {AOE}}}{2}.\)
Vì \[MA\] là tiếp tuyến với đường tròn \[\left( O \right)\] tại điểm \[A\] nên \(OA \bot MA\) hay \(\widehat {OAM} = 90^\circ .\)
Suy ra \[\widehat {MAE} = 90^\circ - \widehat {OAE}\]\[ = 90^\circ - \left( {90^\circ - \frac{{\widehat {AOE}}}{2}} \right) = \frac{{\widehat {AOE}}}{2}.\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\]
Mặt khác nên \[\widehat {ACM} = \frac{{\widehat {AOE}}}{2}.\,\,\,\,\left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \(\widehat {MAE} = \widehat {ACM}\).
Xét \(\Delta AME\) và \(\Delta CMA\) có: \(\widehat {AME}\) chung; \(\widehat {MAE} = \widehat {ACM}\) (cmt)
Do đó . Suy ra \(\frac{{MA}}{{ME}} = \frac{{MC}}{{MA}}\) hay \(M{A^2} = ME \cdot MC.\,\,\,\,\,\left( 1 \right)\)
Vi \(MA,\,\,MB\) là hai tiếp tuyến của đường tròn \(\left( O \right)\) nên \(MA = MB.\)
Lại có \(OA = OB\) nên \(MO\) là đường trung trực của \(AB\) nên \(AB \bot MO\) tại \[H.\]
Xét \[\Delta OAM\] vuông tại \(A\) có đường cao \(AH\), ta có \(M{A^2} = MH \cdot MO.\,\,\,\,\,\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(ME \cdot MC = MH \cdot MO\) (đpcm).
Chứng minh ba điểm \(C,\,\,H,\,\,I\) thẳng hàng.
Do \(I\) lả điểm đối xứng của \(E\) qua \(OM\) nên \(OM\) là đường trung trực của \(EI\) nên \(OE = OI,\) suy ra \(I \in \left( {O\,;R} \right).\)
Do \(ME \cdot MC = MH \cdot MO\) nên \(\frac{{ME}}{{MH}} = \frac{{MO}}{{MC}}\).
Xét \(\Delta MEH\) và \(\Delta MOC\) có \(\widehat {OME}\) chung; \(\frac{{ME}}{{MH}} = \frac{{MO}}{{MC}}\) (cmt).
Do đó suy ra \(\widehat {MHE} = \widehat {MCO}\) (hai góc tương ứng).
Mà \(\widehat {MHE} + \widehat {EHO} = 180^\circ \) nên \(\widehat {MCO} + \widehat {EHO} = 180^\circ .\)
Mà \[\widehat {MCO}\] và \[\widehat {EHO}\] ở vị trí đối diện nên tứ giác \(EHOC\) nội tiếp đường tròn.
Suy ra \(\widehat {EHC} = \widehat {EOC}\) (cùng chắn cung \(EC\,).\)
Ta có \(\widehat {IHE} = 2\widehat {MHE}\) (tính chất đường trung trực)
Mà \(\widehat {MHE} = \widehat {MCO}\) nên
\(\widehat {IHE} + \widehat {EHC} = 2\widehat {MHE} + \widehat {EOC}\)\( = 2\widehat {MCO} + \widehat {EOC} = \widehat {MCO} + \widehat {CEO} + \widehat {EOC} = 180^\circ \).
Vậy ba điểm \(C,\,\,H,\,\,I\) thẳng hàng.
Lời giải
1) Gọi \(x,y\,\,\left( m \right)\) lần lượt là chiều dài và chiều rộng của mảnh đất đã cho \[\left( {x,y > 0\,;\,\,x > y} \right).\]
Nửa chu vi mảnh đất hình chữ nhật là: \(52:2 = 26\,\,\left( {\rm{m}} \right)\) hay \(x + y = 26. & \left( 1 \right)\)
Diện tích mảnh đất hình chữ nhật là: \(\left( {x - 2} \right)\left( {y - 2} \right) = 112\) hay \(xy - 2\left( {x + y} \right) = 108.\,\,\,\,\,\left( 2 \right)\)
Thay \[\left( 1 \right)\] vào \[\left( 2 \right)\] ta có \(xy - 2 \cdot 26 = 108\) nên \(xy = 160. & \left( 3 \right)\)
Từ \[\left( 1 \right)\] và \(\left( 3 \right)\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 26\\xy = 160\end{array} \right.\).
Từ phương trình thứ nhất ta có \(y = 26 - x\). Thế vào phương trình thứ hai, ta được
\(x\left( {26 - x} \right) = 160\) hay \({x^2} - 26x + 160 = 0 & \left( * \right)\)
Giải phương trình \(\left( * \right)\), ta được: \(x = 16\) hoặc \(x = 10\).
Với \(x = 16\) thì \(y = 26 - 16 = 10\) (thỏa mãn điều kiện \[x > y).\]
Với \(x = 10\) thì \(y = 26 - 10 = 16\) (không thỏa mãn điều kiện \[x > y).\]
Vậy chiều dài ban đầu của khu vườn là \(10\,\,{\rm{m}}\) và chiều rộng ban đầu của khu vườn là \(16\,\,{\rm{m}}{\rm{.}}\)
2) Thể tích của viên bi là: \({V_{bi}} = \frac{4}{3}\pi \cdot {3^3} = 36\pi \left( {{\rm{c}}{{\rm{m}}^3}} \right)\).
Phần thể tích nước tăng lên sau khi thả viên bi là:
\({V_t} = \pi {R^2}h = \pi \cdot {5^2} \cdot h = 25\pi h\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)
Vì phần thể tích nước tăng bằng thể tích của viên bi nên \(25\pi h = 36\pi \), suy ra \(h = \frac{{36}}{{25}}\,\,\left( {{\rm{cm}}} \right).\)
Vậy sau khi thả viên bi vào thì mực nước trong ly dâng lên \(\frac{{36}}{{25}}\,\,{\rm{cm}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
123 bài tập Nón trụ cầu và hình khối có lời giải
50 bài tập Một số yếu tố xác suất có lời giải
Đề thi tham khảo môn Toán vào 10 tỉnh Quảng Bình năm học 2025-2026
Đề thi minh họa (Dự thảo) TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đồng Nai
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_TP Hà Nội
Đề thi thử TS vào 10 (Lần 2 - Tháng 2) năm học 2025 - 2026_Môn Toán_THCS Hoằng Thanh_Tỉnh Thanh Hóa
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Bình Phước
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận