Câu hỏi:

29/08/2024 126

Tủ sách học tốt của lớp 9A có hai loại tạp chí, gồm tạp chí Toán học & Tuổi trẻ (TH&TT) và tạp chí Pi. Biết rằng số tạp chí TH&TT nhiều hơn số tạp chí Pi; tổng số tạp chí TH&TT và hai lần số tạp chí Pi nhiều hơn 54; tổng số tạp chí Pi và hai lần số tạp chí TH&TT ít hơn 57. Tính số tạp chí mỗi loại.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(x\) là số tạp chí TH&TT; \(y\) là số tạp chí Pi \(\left( {x,\,\,y \in {\mathbb{N}^{\rm{*}}}} \right)\).

Theo đề bài ta có hệ bất phương trình sau:

\(\left\{ {\begin{array}{*{20}{l}}{x > y}\\{x + 2y > 54}\\{2x + y < 57}\end{array}} \right.\) nên \[\left\{ {\begin{array}{*{20}{l}}{x > y}\\{ - x + y >  - 3}\end{array}} \right.\] hay \[\left\{ {\begin{array}{*{20}{l}}{x - y > 0}\\{x - y < 3}\end{array}} \right.\] suy ra \(0 < x - y < 3.\)

Vì \(x,\,\,y \in {\mathbb{N}^{\rm{*}}}\) nên \(x - y = 1\) hoặc \(x - y = 2.\)

– Trường hợp 1: \(x - y = 1\) hay \(x = y + 1\).

Từ \(\left\{ {\begin{array}{*{20}{l}}{x + 2y > 54}\\{2x + y < 57}\end{array}} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{y + 1 + 2y > 54}\\{2\left( {y + 1} \right) + y < 57}\end{array}} \right.\) nên \(\left\{ {\begin{array}{*{20}{l}}{y > \frac{{53}}{3}}\\{y < \frac{{55}}{3}}\end{array}} \right.\), suy ra \(\frac{{53}}{3} < y < \frac{{55}}{3}.\)

Do đó \(y = 18\) suy ra \(x = 19\).

– Trường hợp 2: \(x - y = 2\) hay \(x = y + 2\)

Từ \(\left\{ {\begin{array}{*{20}{l}}{x + 2y > 54}\\{2x + y < 57}\end{array}} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{y + 2 + 2y > 54}\\{2\left( {y + 2} \right) + y < 57}\end{array}} \right.\) nên \(\left\{ {\begin{array}{*{20}{l}}{y > 17}\\{y < \frac{{53}}{3}}\end{array}} \right.\) (không có số tự nhiên \(y\) thỏa mãn).
Vậy có 19 cuốn tạp chí TH&TT và 18 cuốn tạp chí Pi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

1) Một mảnh đất có dạng hình chữ nhật với chu vi bằng \[52{\rm{ m}}.\] Trên mảnh đất đó, người ta làm một vườn rau có dạng hình chữ nhật với diện tích \(112{\rm{\;}}{{\rm{m}}^2}\) và một lối đi xung quanh vườn rau rộng \[1{\rm{ m}}\] (Hình 1). Tính các kích thước của mảnh đất đó.
1) Một mảnh đất có dạng hình chữ nhật với chu vi bằng 52m Trên mảnh đất đó, người ta làm một vườn rau có dạng hình chữ nhật với diện tích (ảnh 1)
2) Người ta thả một viên bi hình cầu không thấm nước, có bán kính bằng \[3{\rm{ cm}}\] ngập hoàn toàn trong một ly nước hình trụ có bán kính đáy bằng \[5{\rm{ cm,}}\] ly được đặt thẳng đứng so với mặt nằm ngang và đủ to để nước không tràn ra ngoài (Hình 2). Hỏi sau khi thả viên bi vào thì mục nước trong ly dâng lên bao nhiêu centimet? Biết thể tích của hình cầu có
1) Một mảnh đất có dạng hình chữ nhật với chu vi bằng 52m Trên mảnh đất đó, người ta làm một vườn rau có dạng hình chữ nhật với diện tích (ảnh 2)

Bán kính \(R\) là \(V = \frac{4}{3}\pi {R^3}\), thể tích hình trụ có bán kính đáy \(r\) và chiều cao \(h\) là \(V = \pi {r^2}h.\)

Xem đáp án » 29/08/2024 751

Câu 2:

Cho đường tròn \(\left( {O\,;\,\,R} \right)\) và điểm \(M\) nằm ngoài đường tròn (với \(OM \ne 2R).\) Qua \(M\) kẻ hai tiếp tuyến \(MA,\,\,MB\) đến đường tròn \(\left( O \right)\) (với \(A,B\) là các tiếp điểm).

1) Chứng minh tứ giác \(MAOB\) nội tiếp đường tròn.

2) Qua \(A\) kẻ đường thẳng song song với \(MB\) cắt đường tròn \(\left( O \right)\) tại \(C\) (khác \(A),\) đường thẳng \(MC\) cắt đường tròn \(\left( O \right)\) tại \(E\) (khác \(C).\) Chứng minh \(\widehat {AEB} = \widehat {BEM}\).

3) Gọi \(H\) là giao điểm của \(OM\) và \(AB\,;\,\,I\) là điểm đối xứng của \(E\) qua \(OM.\) Chứng minh \(ME \cdot MC = MH \cdot MO\) và ba điểm \(C,\,\,H,\,\,I\) thẳng hàng.

Xem đáp án » 29/08/2024 706

Câu 3:

Không sử dụng máy tính cầm tay:

1) Rút gọn biểu thức \(A = \sqrt {36}  + \sqrt 9  - \sqrt {81} \).

2) Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{r}}{x + 3y = 6}\\{2x - 3y = 3}\end{array}} \right.\).

3) Giải phương trình \(3{x^2} - 7x + 4 = 0\).

Xem đáp án » 29/08/2024 109

Câu 4:

Trong mặt phẳng tọa độ \(Oxy\), cho parabol \(\left( P \right):y = 2{x^2}\) và đường thẳng \(\left( d \right):y = \left( {m + 1} \right)x + 4\), với \(m\) là tham số.

1) Vẽ parabol \(\left( P \right)\).

2) Tìm tất cả các giá trị của tham số \(m\) để đường thẳng \(\left( d \right)\) cắt parabol \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} - {x_1}{x_2} = 6\).

Xem đáp án » 29/08/2024 105

Bình luận


Bình luận