Câu hỏi:
29/08/2024 2,577Cho đường tròn \(\left( {O\,;\,\,R} \right)\) và điểm \(M\) nằm ngoài đường tròn (với \(OM \ne 2R).\) Qua \(M\) kẻ hai tiếp tuyến \(MA,\,\,MB\) đến đường tròn \(\left( O \right)\) (với \(A,B\) là các tiếp điểm).
1) Chứng minh tứ giác \(MAOB\) nội tiếp đường tròn.
2) Qua \(A\) kẻ đường thẳng song song với \(MB\) cắt đường tròn \(\left( O \right)\) tại \(C\) (khác \(A),\) đường thẳng \(MC\) cắt đường tròn \(\left( O \right)\) tại \(E\) (khác \(C).\) Chứng minh \(\widehat {AEB} = \widehat {BEM}\).
Quảng cáo
Trả lời:
1) Chứng minh tứ giác \(MAOB\) nội tiếp đường tròn.

Vì \(MA,\,\,MB\) là tiếp tuyến của đường tròn \(\left( O \right)\) (với \(A,B\) là các tiếp điểm) nên
\(MA \bot OA\,,\,\,MB \bot OB\)
Hay \(\widehat {OAM} = \widehat {OBM} = 90^\circ \).
Xét tứ giác \(MAOB\) có
\(\widehat {OAM} + \widehat {OBM} = 90^\circ + 90^\circ = 180^\circ \).
Mà hai góc này ở vị trí đối diện nên tứ giác \(MAOB\) nội tiếp đường tròn.
2) Chứng minh \(\widehat {AEB} = \widehat {BEM}\).
Vì \(AC\,{\rm{//}}\,MB\,\,\left( {{\rm{gt}}} \right)\) nên \(\widehat {ACE} = \widehat {BME}\) (so le trong)
Mà \(\widehat {ACE} = \widehat {ABE}\) (góc nội tiếp cùng chắn cung \(AE)\), suy ra \(\widehat {ABE} = \widehat {BME}{\rm{.\;}}\)
Vì \(\Delta OBE\) cân tại \(O\) \(\left( {OB = OE} \right)\) nên \(\widehat {OBE} = \widehat {OEB}.\)
Suy ra \(\widehat {OBE} = \widehat {OEB} = \frac{{180^\circ - \widehat {BOE}}}{2} = 90^\circ - \frac{{\widehat {BOE}}}{2}.\)
Vì \[MB\] là tiếp tuyến với đường tròn \[\left( O \right)\] tại điểm \[B\] nên \(OB \bot MB\) hay \(\widehat {OBM} = 90^\circ .\)
Suy ra \[\widehat {MBE} = 90^\circ - \widehat {OBE}\]\[ = 90^\circ - \left( {90^\circ - \frac{{\widehat {BOE}}}{2}} \right) = \frac{{\widehat {BOE}}}{2}.\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\]
Mặt khác nên \[\widehat {BAE} = \frac{{\widehat {BOE}}}{2}.\,\,\,\,\left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \(\widehat {BAE} = \widehat {MBE}\).
Xét \(\Delta ABE\) và \(\Delta BME\) có: \(ABE = BME\,\,\left( {{\rm{cmt}}} \right)\); \(\widehat {BAE} = \widehat {MBE}\,\,\left( {{\rm{cmt}}} \right)\).
Do đó . Suy ra \(\widehat {AEB} = \widehat {BEM}\) (hai góc tương ứng) (đpcm).
3) Chứng minh \(ME \cdot MC = MH \cdot MO\) và ba điểm \(C,\,\,H,\,\,I\) thẳng hàng.
Chứng minh \(ME \cdot MC = MH \cdot MO\).
Vì \(\Delta OAE\) cân tại \(O\) \(\left( {OA = OE} \right)\) nên \(\widehat {OAE} = \widehat {OEA}.\)
Suy ra \(\widehat {OAE} = \widehat {OEA} = \frac{{180^\circ - \widehat {AOE}}}{2} = 90^\circ - \frac{{\widehat {AOE}}}{2}.\)
Vì \[MA\] là tiếp tuyến với đường tròn \[\left( O \right)\] tại điểm \[A\] nên \(OA \bot MA\) hay \(\widehat {OAM} = 90^\circ .\)
Suy ra \[\widehat {MAE} = 90^\circ - \widehat {OAE}\]\[ = 90^\circ - \left( {90^\circ - \frac{{\widehat {AOE}}}{2}} \right) = \frac{{\widehat {AOE}}}{2}.\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\]
Mặt khác nên \[\widehat {ACM} = \frac{{\widehat {AOE}}}{2}.\,\,\,\,\left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \(\widehat {MAE} = \widehat {ACM}\).
Xét \(\Delta AME\) và \(\Delta CMA\) có: \(\widehat {AME}\) chung; \(\widehat {MAE} = \widehat {ACM}\) (cmt)
Do đó . Suy ra \(\frac{{MA}}{{ME}} = \frac{{MC}}{{MA}}\) hay \(M{A^2} = ME \cdot MC.\,\,\,\,\,\left( 1 \right)\)
Vi \(MA,\,\,MB\) là hai tiếp tuyến của đường tròn \(\left( O \right)\) nên \(MA = MB.\)
Lại có \(OA = OB\) nên \(MO\) là đường trung trực của \(AB\) nên \(AB \bot MO\) tại \[H.\]
Xét \[\Delta OAM\] vuông tại \(A\) có đường cao \(AH\), ta có \(M{A^2} = MH \cdot MO.\,\,\,\,\,\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(ME \cdot MC = MH \cdot MO\) (đpcm).
Chứng minh ba điểm \(C,\,\,H,\,\,I\) thẳng hàng.
Do \(I\) lả điểm đối xứng của \(E\) qua \(OM\) nên \(OM\) là đường trung trực của \(EI\) nên \(OE = OI,\) suy ra \(I \in \left( {O\,;R} \right).\)
Do \(ME \cdot MC = MH \cdot MO\) nên \(\frac{{ME}}{{MH}} = \frac{{MO}}{{MC}}\).
Xét \(\Delta MEH\) và \(\Delta MOC\) có \(\widehat {OME}\) chung; \(\frac{{ME}}{{MH}} = \frac{{MO}}{{MC}}\) (cmt).
Do đó suy ra \(\widehat {MHE} = \widehat {MCO}\) (hai góc tương ứng).
Mà \(\widehat {MHE} + \widehat {EHO} = 180^\circ \) nên \(\widehat {MCO} + \widehat {EHO} = 180^\circ .\)
Mà \[\widehat {MCO}\] và \[\widehat {EHO}\] ở vị trí đối diện nên tứ giác \(EHOC\) nội tiếp đường tròn.
Suy ra \(\widehat {EHC} = \widehat {EOC}\) (cùng chắn cung \(EC\,).\)
Ta có \(\widehat {IHE} = 2\widehat {MHE}\) (tính chất đường trung trực)
Mà \(\widehat {MHE} = \widehat {MCO}\) nên
\(\widehat {IHE} + \widehat {EHC} = 2\widehat {MHE} + \widehat {EOC}\)\( = 2\widehat {MCO} + \widehat {EOC} = \widehat {MCO} + \widehat {CEO} + \widehat {EOC} = 180^\circ \).
Vậy ba điểm \(C,\,\,H,\,\,I\) thẳng hàng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) Gọi \(x,y\,\,\left( m \right)\) lần lượt là chiều dài và chiều rộng của mảnh đất đã cho \[\left( {x,y > 0\,;\,\,x > y} \right).\]
Nửa chu vi mảnh đất hình chữ nhật là: \(52:2 = 26\,\,\left( {\rm{m}} \right)\) hay \(x + y = 26. & \left( 1 \right)\)
Diện tích mảnh đất hình chữ nhật là: \(\left( {x - 2} \right)\left( {y - 2} \right) = 112\) hay \(xy - 2\left( {x + y} \right) = 108.\,\,\,\,\,\left( 2 \right)\)
Thay \[\left( 1 \right)\] vào \[\left( 2 \right)\] ta có \(xy - 2 \cdot 26 = 108\) nên \(xy = 160. & \left( 3 \right)\)
Từ \[\left( 1 \right)\] và \(\left( 3 \right)\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 26\\xy = 160\end{array} \right.\).
Từ phương trình thứ nhất ta có \(y = 26 - x\). Thế vào phương trình thứ hai, ta được
\(x\left( {26 - x} \right) = 160\) hay \({x^2} - 26x + 160 = 0 & \left( * \right)\)
Giải phương trình \(\left( * \right)\), ta được: \(x = 16\) hoặc \(x = 10\).
Với \(x = 16\) thì \(y = 26 - 16 = 10\) (thỏa mãn điều kiện \[x > y).\]
Với \(x = 10\) thì \(y = 26 - 10 = 16\) (không thỏa mãn điều kiện \[x > y).\]
Vậy chiều dài ban đầu của khu vườn là \(10\,\,{\rm{m}}\) và chiều rộng ban đầu của khu vườn là \(16\,\,{\rm{m}}{\rm{.}}\)
2) Thể tích của viên bi là: \({V_{bi}} = \frac{4}{3}\pi \cdot {3^3} = 36\pi \left( {{\rm{c}}{{\rm{m}}^3}} \right)\).
Phần thể tích nước tăng lên sau khi thả viên bi là:
\({V_t} = \pi {R^2}h = \pi \cdot {5^2} \cdot h = 25\pi h\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)
Vì phần thể tích nước tăng bằng thể tích của viên bi nên \(25\pi h = 36\pi \), suy ra \(h = \frac{{36}}{{25}}\,\,\left( {{\rm{cm}}} \right).\)
Vậy sau khi thả viên bi vào thì mực nước trong ly dâng lên \(\frac{{36}}{{25}}\,\,{\rm{cm}}.\)
Lời giải
1) Tập xác định \(D = \mathbb{R}\).
Bảng giá trị:
\(x\) |
\( - 2\) |
\( - 1\) |
0 |
1 |
2 |
\(y = 2{x^2}\) |
8 |
2 |
0 |
2 |
8 |

2) Ta có: \({\rm{\Delta }} = {\left[ { - \left( {m + 1} \right)} \right]^2} - 4 \cdot 2 \cdot \left( { - 4} \right) = {\left( {m + 1} \right)^2} + 32 > 0\) với mọi \(m\) nên phương trình luôn có hai nghiệm phân biệt \({x_1},{x_2}\).
Theo Viète, ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = \frac{{m + 1}}{2}}\\{{x_1} \cdot {x_2} = - 2}\end{array}} \right.\).
Thay vào biểu thức \({x_1} + {x_2} - {x_1} \cdot {x_2} = 6\) ta được: \(\frac{{m + 1}}{2} - \left( { - 2} \right) = 6\) hay \(\frac{{m + 1}}{2} = 4.\)
Do đó \(m + 1 = 8\) nên \(m = 7.\)
Vậy với \(m = 7\) thì \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} - {x_1} \cdot {x_2} = 6\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Linhh Chii
cíu em câu 9 với ạ