Câu hỏi:

19/09/2024 212

Xét phương trình tương đối giữa hai đường thẳng d và d' trong mỗi trường hợp sau:

a) d: \[\left\{ \begin{array}{l}x = t\\y = 1 + 3t\\z = 1 - t\end{array} \right.\] và d': \[\left\{ \begin{array}{l}x = 2 + 2t'\\y = 7 + 6t'\\z = - 1 - 2t'\end{array} \right.\];

b) d: \[\frac{{x - 2}}{2} = \frac{y}{3} = \frac{z}{1}\]d': \[\frac{x}{4} = \frac{y}{6} = \frac{z}{2}\];

c) d: \[\left\{ \begin{array}{l}x = 1 + t\\y = 1 + t\\z = 2 - t\end{array} \right.\] và d': \[\frac{{x - 2}}{2} = \frac{{y - 2}}{3} = \frac{{z - 1}}{1}\];

d) \[\frac{{x - 1}}{2} = \frac{{y - 1}}{1} = \frac{{z - 2}}{1}\]d': \[\left\{ \begin{array}{l}x = 2\\y = 1 + t\\z = 7\end{array} \right.\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đường thẳng d đi qua điểm M(0; 1; 1) và nhận \[\overrightarrow a \] = (1; 3; −1) làm vectơ chỉ phương.

Đường thẳng d' đi qua điểm M'(2; 7; −1) và nhận \[\overrightarrow {a'} \]= (2; 6; −2) làm vectơ chỉ phương.

Ta có: \[\left\{ \begin{array}{l}\overrightarrow {MM'} = \left( {2;6; - 2} \right)\\\overrightarrow {a'} = 2\overrightarrow a = \overrightarrow {MM'} \end{array} \right.\], suy ra \[\overrightarrow a ,\overrightarrow {a'} ,\overrightarrow {MM'} \] cùng phương.

Do đó d ≡ d'.

b) Đường thẳng d đi qua điểm M(2; 0; 0) và nhận \[\overrightarrow a \] = (2; 3; 1) làm vectơ chỉ phương.

Đường thẳng d' đi qua điểm M'(0; 0; 0) và nhận \[\overrightarrow {a'} \]= (4; 6; 2) làm vectơ chỉ phương.

Ta có: \[\left\{ \begin{array}{l}\overrightarrow {MM'} = \left( { - 2;0;0} \right)\\\overrightarrow {a'} = 2\overrightarrow a \\\left[ {\overrightarrow a ,\overrightarrow {MM'} } \right] = \left( {\left| {\begin{array}{*{20}{c}}3&1\\0&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\0&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&3\\2&0\end{array}} \right|} \right) = \left( {0;2; - 6} \right) \ne \overrightarrow {0.} \end{array} \right.\]

Do đó d d'.

c) Đường thẳng d đi qua điểm M(1; 1; 2) và nhận \[\overrightarrow a \] = (1; 1; −1) làm vectơ chỉ phương.

Đường thẳng  d' đi qua điểm M'(2; 2; 1) và nhận \[\overrightarrow {a'} \]= (2; 3; 1) làm vectơ chỉ phương.

Ta có: \[\left\{ \begin{array}{l}\overrightarrow {MM'} = \left( {1;0;5} \right)\\\left[ {\overrightarrow a ,\overrightarrow {a'} } \right] = \left( { - 1;0;2} \right) \ne \overrightarrow 0 \\\left[ {\overrightarrow a ,\overrightarrow {a'} } \right]\overrightarrow {MM'} = 0.\end{array} \right.\]

Do đó hai đường thẳng d và d' chéo nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: \[\overrightarrow {MA} = \left( { - 3;4;3} \right),\overrightarrow {NA} = \left( {5;2;4} \right)\], suy ra

MA = \[\sqrt {{{\left( { - 3} \right)}^2} + {4^2} + {3^2}} \]= \[\sqrt {34} \]≈ 5,8 (m),

NA = \[\sqrt {{5^2} + {2^2} + {4^2}} = \sqrt {45} \] ≈ 6,7 (m).

b) Mặt phẳng (OMN) có cặp vectơ chỉ phương là \[\overrightarrow {OM} = \left( {3; - 4;3} \right),\overrightarrow {ON} = \left( { - 5 - 2;2} \right)\] nên có vectơ pháp tuyến \[\overrightarrow n = \left[ {\overrightarrow {OM} ,\overrightarrow {ON} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 4}&3\\{ - 2}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&3\\2&{ - 5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&{ - 4}\\{ - 5}&{ - 2}\end{array}} \right|} \right)\]

                                           = (−2; −21; −26).

Gọi α, β lần lượt là góc tạo bởi MA, NA với mặt phẳng (AMN).

Ta có: sinα = \[\frac{{\left| {\overrightarrow {MA} .\overrightarrow n } \right|}}{{\left| {\overrightarrow {MA} } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| { - 3.\left( { - 2} \right) + 4.\left( { - 21} \right) + 3.\left( { - 26} \right)} \right|}}{{\sqrt {{{\left( { - 3} \right)}^2} + {4^2} + {3^2}} .\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 21} \right)}^2} + {{\left( { - 26} \right)}^2}} }}\]

                  = \[\frac{{156}}{{\sqrt {38114} }}\].

α ≈ 53°;

Sinβ = \[\frac{{\left| {\overrightarrow {NA} .\overrightarrow n } \right|}}{{\left| {\overrightarrow {NA} } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {5.\left( { - 2} \right) + 2.\left( { - 21} \right) + 4.\left( { - 26} \right)} \right|}}{{\sqrt {{5^2} + {2^2} + {4^2}} .\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 21} \right)}^2} + {{\left( { - 26} \right)}^2}} }}\]

        \[ = \frac{{156}}{{\sqrt {50445} }}\].

β ≈ 44°.

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 4. Mặt bên SAB là tam giác cân tại S có chiều cao bằng 6 và nằm trong mặt phẳng vuông góc với đáy. (ảnh 1)

Gọi O là trung điểm của AB, suy ra SO (ABCD).

Chọn hệ trục Oxyz như hình bên.

Ta có: S(0; 0; 6), A(2; 0; 0), B(−2; 0; 0), C(−2; 4; 0), D(2; 4; 0).

a) Ta có: \[\overrightarrow {SD} = \left( {2;4; - 6} \right),\overrightarrow {BC} = \left( {0;4;0} \right)\].

Suy ra cosα = \[\frac{{\left| {\overrightarrow {SD} .\overrightarrow {BC} } \right|}}{{\left| {\overrightarrow {SD} } \right|.\left| {\overrightarrow {BC} } \right|}} = \frac{{\left| {2.0 + 4.4 - 6.0} \right|}}{{\sqrt {{2^2} + {4^2} + {{\left( { - 6} \right)}^2}} .\sqrt {{0^2} + {4^2} + {0^2}} }} = \frac{{\sqrt {14} }}{7}\] α ≈ 57,7°.

b) Mặt phẳng (SAD) có cặp vectơ chỉ phương là \[\overrightarrow {SD} = \left( {2;4; - 6} \right)\], \[\overrightarrow {SA} = \left( {2;0; - 6} \right)\].

Ta có: \[\left[ {\overrightarrow {SD} ,\overrightarrow {SA} } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&{ - 6}\\0&{ - 6}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 6}&2\\{ - 6}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&4\\2&0\end{array}} \right|} \right)\] = (−24; 0; −8) = −8(3; 0; 1).

Vậy \[\overrightarrow n = \left( {3;0;1} \right)\] là vectơ pháp tuyến của (SAD).

Mặt phẳng (SCD) có cặp vectơ chỉ phương là: \[\overrightarrow {DC} = \left( { - 4;0;0} \right)\], \[\overrightarrow {SD} = \left( {2;4; - 6} \right)\].

Ta có: \[\left[ {\overrightarrow {SD} ,\overrightarrow {DC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&{ - 6}\\0&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 6}&2\\0&{ - 4}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&4\\{ - 4}&0\end{array}} \right|} \right)\] = (0; 24; 16) = 8(0; 3; 2).

Vậy \[\overrightarrow {n'} = \left( {0;3;2} \right)\].

Suy ra cosβ = \[\frac{{\overrightarrow n .\overrightarrow {n'} }}{{\left| {\overrightarrow n } \right|.\left| {\overrightarrow {n'} } \right|}} = \frac{{\left| {3.0 + 0.3 + 1.2} \right|}}{{\sqrt {{3^2} + {0^2} + {1^2}} .\sqrt {{0^2} + {3^2} + {2^2}} }} = \frac{2}{{\sqrt {130} }}\] β ≈ 79,9°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay