Câu hỏi:
19/09/2024 627Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 4. Mặt bên SAB là tam giác cân tại S có chiều cao bằng 6 và nằm trong mặt phẳng vuông góc với đáy.
a) Tính góc α giữa hai đường thẳng SD và BC;
b) Tính góc β giữa hai mặt phẳng (SAD) và (SCD).
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi O là trung điểm của AB, suy ra SO ⊥ (ABCD).
Chọn hệ trục Oxyz như hình bên.
Ta có: S(0; 0; 6), A(2; 0; 0), B(−2; 0; 0), C(−2; 4; 0), D(2; 4; 0).
a) Ta có: \[\overrightarrow {SD} = \left( {2;4; - 6} \right),\overrightarrow {BC} = \left( {0;4;0} \right)\].
Suy ra cosα = \[\frac{{\left| {\overrightarrow {SD} .\overrightarrow {BC} } \right|}}{{\left| {\overrightarrow {SD} } \right|.\left| {\overrightarrow {BC} } \right|}} = \frac{{\left| {2.0 + 4.4 - 6.0} \right|}}{{\sqrt {{2^2} + {4^2} + {{\left( { - 6} \right)}^2}} .\sqrt {{0^2} + {4^2} + {0^2}} }} = \frac{{\sqrt {14} }}{7}\] ⇒ α ≈ 57,7°.
b) Mặt phẳng (SAD) có cặp vectơ chỉ phương là \[\overrightarrow {SD} = \left( {2;4; - 6} \right)\], \[\overrightarrow {SA} = \left( {2;0; - 6} \right)\].
Ta có: \[\left[ {\overrightarrow {SD} ,\overrightarrow {SA} } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&{ - 6}\\0&{ - 6}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 6}&2\\{ - 6}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&4\\2&0\end{array}} \right|} \right)\] = (−24; 0; −8) = −8(3; 0; 1).
Vậy \[\overrightarrow n = \left( {3;0;1} \right)\] là vectơ pháp tuyến của (SAD).
Mặt phẳng (SCD) có cặp vectơ chỉ phương là: \[\overrightarrow {DC} = \left( { - 4;0;0} \right)\], \[\overrightarrow {SD} = \left( {2;4; - 6} \right)\].
Ta có: \[\left[ {\overrightarrow {SD} ,\overrightarrow {DC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&{ - 6}\\0&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 6}&2\\0&{ - 4}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&4\\{ - 4}&0\end{array}} \right|} \right)\] = (0; 24; 16) = 8(0; 3; 2).
Vậy \[\overrightarrow {n'} = \left( {0;3;2} \right)\].
Suy ra cosβ = \[\frac{{\overrightarrow n .\overrightarrow {n'} }}{{\left| {\overrightarrow n } \right|.\left| {\overrightarrow {n'} } \right|}} = \frac{{\left| {3.0 + 0.3 + 1.2} \right|}}{{\sqrt {{3^2} + {0^2} + {1^2}} .\sqrt {{0^2} + {3^2} + {2^2}} }} = \frac{2}{{\sqrt {130} }}\] ⇒ β ≈ 79,9°.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Người ta muốn dựng một cột ăng – ten trên một sườn đồi. Ăng – ten được dựng thẳng đứng trong không gian Oxyz với độ dài đơn vị trên mỗi trục bằng 1 m. Gọi O là gốc cột, A là điểm buộc dây cáp vào cột ăng – ten và M, N là hai điểm neo dây cáp xuống mặt sườn đồi (Hình 6). Cho biết tọa độ các điểm nói trên lần lượt là O(0; 0; 0), A(0; 0; 6), M(3; −4; 3), N(−5; −2; 2).
a) Tính độ dài các đoạn dây cáp MA và NA.
b) Tính góc tạo bởi các sợi dây cáp MA, NA với mặt phẳng sườn đồi.
Câu 2:
Tính góc α trong mỗi trường hợp sau:
a) α là góc giữa hai vectơ \[\overrightarrow a = \left( {1;1; - 1} \right)\] và \[\overrightarrow b = \left( {5;2;7} \right)\];
b) α là góc giữa hai đường thẳng d: \[\left\{ \begin{array}{l}x = 1 + t\\y = 2 - \sqrt 3 t\\z = 5\end{array} \right.\] và d': \[\left\{ \begin{array}{l}x = 1 - \sqrt 3 t'\\y = 7 + t'\\z = 9\end{array} \right.\];
c) α là góc giữa hai mặt phẳng (P): 4x + 2y – z + 9 = 0 và (Q): x + y + 6z – 11 =0;
d) α là góc giữa đường thẳng d: \[\frac{x}{2} = \frac{y}{{ - 1}} = \frac{z}{1}\] và mặt phẳng (P): x + y − z + 99 = 0.
Câu 3:
Lập phương trình tham số của đường thẳng d trong mỗi trường hợp sau:
a) d đi qua điểm A(1; −5; 0) và có vectơ chỉ phương \[\overrightarrow a = \left( {2;0;7} \right)\];
b) d đi qua hai điểm M(3; −1; −1); N(5; 1; 2).
Câu 4:
Cho đường thẳng d có phương trình tham số \[\left\{ \begin{array}{l}x = 7 + 5t\\y = 3 + 11t\\z = 9 - 6t\end{array} \right.\].
Tìm một điểm trên d và một vectơ chỉ phương của d.
Câu 5:
Lập phương trình chính tắc của đường thẳng d trong mỗi trường hợp sau:
a) d đi qua điểm M(9; 0; 0) và có vectơ chỉ phương \[\overrightarrow a = \left( {5; - 11;4} \right)\];
b) d đi qua hai điểm A(6; 0; −1), B(8; 3; 2);
c) d có phương trình tham số \[\left\{ \begin{array}{l}x = 2t\\y = - 1 + 7t\\z = 3 - 6t\end{array} \right.\].
Câu 6:
Xét phương trình tương đối giữa hai đường thẳng d và d' trong mỗi trường hợp sau:
a) d: \[\left\{ \begin{array}{l}x = t\\y = 1 + 3t\\z = 1 - t\end{array} \right.\] và d': \[\left\{ \begin{array}{l}x = 2 + 2t'\\y = 7 + 6t'\\z = - 1 - 2t'\end{array} \right.\];
b) d: \[\frac{{x - 2}}{2} = \frac{y}{3} = \frac{z}{1}\] và d': \[\frac{x}{4} = \frac{y}{6} = \frac{z}{2}\];
c) d: \[\left\{ \begin{array}{l}x = 1 + t\\y = 1 + t\\z = 2 - t\end{array} \right.\] và d': \[\frac{{x - 2}}{2} = \frac{{y - 2}}{3} = \frac{{z - 1}}{1}\];
d) \[\frac{{x - 1}}{2} = \frac{{y - 1}}{1} = \frac{{z - 2}}{1}\] và d': \[\left\{ \begin{array}{l}x = 2\\y = 1 + t\\z = 7\end{array} \right.\].
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
về câu hỏi!