Câu hỏi:

19/09/2024 239

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 4. Mặt bên SAB là tam giác cân tại S có chiều cao bằng 6 và nằm trong mặt phẳng vuông góc với đáy.

a) Tính góc α giữa hai đường thẳng SD và BC;

b) Tính góc β giữa hai mặt phẳng (SAD) và (SCD).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 4. Mặt bên SAB là tam giác cân tại S có chiều cao bằng 6 và nằm trong mặt phẳng vuông góc với đáy. (ảnh 1)

Gọi O là trung điểm của AB, suy ra SO (ABCD).

Chọn hệ trục Oxyz như hình bên.

Ta có: S(0; 0; 6), A(2; 0; 0), B(−2; 0; 0), C(−2; 4; 0), D(2; 4; 0).

a) Ta có: \[\overrightarrow {SD} = \left( {2;4; - 6} \right),\overrightarrow {BC} = \left( {0;4;0} \right)\].

Suy ra cosα = \[\frac{{\left| {\overrightarrow {SD} .\overrightarrow {BC} } \right|}}{{\left| {\overrightarrow {SD} } \right|.\left| {\overrightarrow {BC} } \right|}} = \frac{{\left| {2.0 + 4.4 - 6.0} \right|}}{{\sqrt {{2^2} + {4^2} + {{\left( { - 6} \right)}^2}} .\sqrt {{0^2} + {4^2} + {0^2}} }} = \frac{{\sqrt {14} }}{7}\] α ≈ 57,7°.

b) Mặt phẳng (SAD) có cặp vectơ chỉ phương là \[\overrightarrow {SD} = \left( {2;4; - 6} \right)\], \[\overrightarrow {SA} = \left( {2;0; - 6} \right)\].

Ta có: \[\left[ {\overrightarrow {SD} ,\overrightarrow {SA} } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&{ - 6}\\0&{ - 6}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 6}&2\\{ - 6}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&4\\2&0\end{array}} \right|} \right)\] = (−24; 0; −8) = −8(3; 0; 1).

Vậy \[\overrightarrow n = \left( {3;0;1} \right)\] là vectơ pháp tuyến của (SAD).

Mặt phẳng (SCD) có cặp vectơ chỉ phương là: \[\overrightarrow {DC} = \left( { - 4;0;0} \right)\], \[\overrightarrow {SD} = \left( {2;4; - 6} \right)\].

Ta có: \[\left[ {\overrightarrow {SD} ,\overrightarrow {DC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&{ - 6}\\0&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 6}&2\\0&{ - 4}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&4\\{ - 4}&0\end{array}} \right|} \right)\] = (0; 24; 16) = 8(0; 3; 2).

Vậy \[\overrightarrow {n'} = \left( {0;3;2} \right)\].

Suy ra cosβ = \[\frac{{\overrightarrow n .\overrightarrow {n'} }}{{\left| {\overrightarrow n } \right|.\left| {\overrightarrow {n'} } \right|}} = \frac{{\left| {3.0 + 0.3 + 1.2} \right|}}{{\sqrt {{3^2} + {0^2} + {1^2}} .\sqrt {{0^2} + {3^2} + {2^2}} }} = \frac{2}{{\sqrt {130} }}\] β ≈ 79,9°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Người ta muốn dựng một cột ăng – ten trên một sườn đồi. Ăng – ten được dựng thẳng đứng trong không gian Oxyz với độ dài đơn vị trên mỗi trục bằng 1 m. Gọi O là gốc cột, A là điểm buộc dây cáp vào cột ăng – ten và M, N là hai điểm neo dây cáp xuống mặt sườn đồi (Hình 6). Cho biết tọa độ các điểm nói trên lần lượt là O(0; 0; 0), A(0; 0; 6), M(3; −4; 3), N(−5; −2; 2).

Người ta muốn dựng một cột ăng – ten trên một sườn đồi. Ăng – ten được dựng thẳng đứng trong không gian Oxyz với độ dài đơn vị trên mỗi trục bằng 1 m. Gọi O là gốc cột, (ảnh 1)

a) Tính độ dài các đoạn dây cáp MA và NA.

b) Tính góc tạo bởi các sợi dây cáp MA, NA với mặt phẳng sườn đồi.

Xem đáp án » 19/09/2024 196

Câu 2:

Lập phương trình tham số của đường thẳng d trong mỗi trường hợp sau:

a) d đi qua điểm A(1; −5; 0) và có vectơ chỉ phương \[\overrightarrow a  = \left( {2;0;7} \right)\];

b) d đi qua hai điểm M(3; −1; −1); N(5; 1; 2).

Xem đáp án » 19/09/2024 83

Câu 3:

Cho đường thẳng d có phương trình tham số \[\left\{ \begin{array}{l}x = 7 + 5t\\y = 3 + 11t\\z = 9 - 6t\end{array} \right.\].

Tìm một điểm trên d và một vectơ chỉ phương của d.

Xem đáp án » 19/09/2024 82

Câu 4:

Tính góc α trong mỗi trường hợp sau:

a) α là góc giữa hai vectơ \[\overrightarrow a = \left( {1;1; - 1} \right)\]\[\overrightarrow b = \left( {5;2;7} \right)\];

b) α là góc giữa hai đường thẳng d: \[\left\{ \begin{array}{l}x = 1 + t\\y = 2 - \sqrt 3 t\\z = 5\end{array} \right.\] và d': \[\left\{ \begin{array}{l}x = 1 - \sqrt 3 t'\\y = 7 + t'\\z = 9\end{array} \right.\];

c) α là góc giữa hai mặt phẳng (P): 4x + 2y – z + 9 = 0 và (Q): x + y + 6z – 11 =0;

d) α là góc giữa đường thẳng d: \[\frac{x}{2} = \frac{y}{{ - 1}} = \frac{z}{1}\] và mặt phẳng (P): x + y − z + 99 = 0.

Xem đáp án » 19/09/2024 71

Câu 5:

Lập phương trình chính tắc của đường thẳng d trong mỗi trường hợp sau:

a) d đi qua điểm M(9; 0; 0) và có vectơ chỉ phương \[\overrightarrow a  = \left( {5; - 11;4} \right)\];

b) d đi qua hai điểm A(6; 0; −1), B(8; 3; 2);

c) d có phương trình tham số \[\left\{ \begin{array}{l}x = 2t\\y =  - 1 + 7t\\z = 3 - 6t\end{array} \right.\].

Xem đáp án » 19/09/2024 67

Câu 6:

Xét phương trình tương đối giữa hai đường thẳng d và d' trong mỗi trường hợp sau:

a) d: \[\left\{ \begin{array}{l}x = t\\y = 1 + 3t\\z = 1 - t\end{array} \right.\] và d': \[\left\{ \begin{array}{l}x = 2 + 2t'\\y = 7 + 6t'\\z = - 1 - 2t'\end{array} \right.\];

b) d: \[\frac{{x - 2}}{2} = \frac{y}{3} = \frac{z}{1}\]d': \[\frac{x}{4} = \frac{y}{6} = \frac{z}{2}\];

c) d: \[\left\{ \begin{array}{l}x = 1 + t\\y = 1 + t\\z = 2 - t\end{array} \right.\] và d': \[\frac{{x - 2}}{2} = \frac{{y - 2}}{3} = \frac{{z - 1}}{1}\];

d) \[\frac{{x - 1}}{2} = \frac{{y - 1}}{1} = \frac{{z - 2}}{1}\]d': \[\left\{ \begin{array}{l}x = 2\\y = 1 + t\\z = 7\end{array} \right.\].

Xem đáp án » 19/09/2024 67

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store