Câu hỏi:
19/09/2024 136Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Xét các đáp án, ta thấy:
Đáp án A:
Phương trình x2 + y2 + z2 + x – 2y + 4z – 3 = 0 có dạng
x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a = \[ - \frac{1}{2}\] ; b = 1; c = −2; d = −3.
Ta có: a2 + b2 + c2 − d = \[\frac{1}{4}\] + 1 + 4 – 3 > 0 do đó đây là phương trình mặt cầu.
Đáp án B:
Phương trình 2x2 + 2y2 + 2z2 – x – y – z = 0 hay x2 + y2 + x2 \[ - \frac{1}{2}\]x \[ - \frac{1}{2}\]y \[ - \frac{1}{2}\]z = 0.
Ta có: a = \[\frac{1}{4}\], b = \[\frac{1}{4}\], c = \[\frac{1}{4}\], d = 0 nên a2 + b2 + c2 – d > 0. Do đó, đây là phương trình mặt cầu.
Đáp án C:
Phương trình x2 + y2 + z2 – 2x + 4y – 4z + 10 = 0 có dạng
x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a = 1, b = −2, c = 2 và d = 10.
Ta có: a2 + b2 + c2 − d = 1 + 4 + 4 – 10 < 0 nên đây không là phương trình mặt cầu.
Đáp án D:
Ta có: 2x2 + 2y2 + 2z2 + 4x + 8y + 6z + 3 = 0 hay x2 + y2 + z2 + 2x + 4y + 3z + \[\frac{3}{2}\] = 0.
Ta có: a2 + b2 + c2 – d > 0 nên đây là phương trình mặt cầu.
Vậy chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Người ta muốn thiết kế một lều cắm trại có dạng là một phần mặt cầu bằng phần mềm 3D.
Cho biết phương trình bề mặt của lều là (S): (x – 3)2 + (y – 3)2 + (z – 1)2 = 9, phương trình mặt phẳng chứa cửa lều là (P): x = 2, phương trình chứa sàn lêu là (Q): z = 0. Tìm tâm và bán kính đường tròn cửa lều và đường tròn sàn lều.
Câu 2:
Cho hai điểm M(1; −1; 5) và N(0; 0; 1). Viết phương trình mặt phẳng (Q) chứa M, N và song song với trục Oy.
Câu 3:
Trong không gian Oxyz (đơn vị trên các trục tọa độ là centimét), đầu in phun của một máy in 3D đang đặt tại điểm M(5; 0; 35). Tính khoảng cách từ đầu in phun đến khay đặt vật in có phương trình z – 5 = 0.
Câu 4:
Cho điểm G(1; 2; 3). Viết phương trình mặt phẳng (P) đi qua G và cắt Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC.
Câu 5:
Cho hai mặt phẳng (α): x – y + nz – 3 = 0 và (β): 2x + my + 2z + 6 = 0. Với giá trị nào của m, n thì (α) song song với (β)?
Câu 6:
Cho đường thẳng d: \[\left\{ \begin{array}{l}x = 1 + t\\y = 2t\\z = - 1\end{array} \right.\], điểm M(1; 2; 1) và mặt phẳng (P): 2x + y – 2z – 1 = 0.
Viết phương trình đường thẳng ∆ đi qua M, song song với (P) và vuông góc với d.
về câu hỏi!