Câu hỏi:
19/09/2024 3,082Quảng cáo
Trả lời:
Đáp án đúng là: C
Xét các đáp án, ta thấy:
Đáp án A:
Phương trình x2 + y2 + z2 + x – 2y + 4z – 3 = 0 có dạng
x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a = \[ - \frac{1}{2}\] ; b = 1; c = −2; d = −3.
Ta có: a2 + b2 + c2 − d = \[\frac{1}{4}\] + 1 + 4 – 3 > 0 do đó đây là phương trình mặt cầu.
Đáp án B:
Phương trình 2x2 + 2y2 + 2z2 – x – y – z = 0 hay x2 + y2 + x2 \[ - \frac{1}{2}\]x \[ - \frac{1}{2}\]y \[ - \frac{1}{2}\]z = 0.
Ta có: a = \[\frac{1}{4}\], b = \[\frac{1}{4}\], c = \[\frac{1}{4}\], d = 0 nên a2 + b2 + c2 – d > 0. Do đó, đây là phương trình mặt cầu.
Đáp án C:
Phương trình x2 + y2 + z2 – 2x + 4y – 4z + 10 = 0 có dạng
x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a = 1, b = −2, c = 2 và d = 10.
Ta có: a2 + b2 + c2 − d = 1 + 4 + 4 – 10 < 0 nên đây không là phương trình mặt cầu.
Đáp án D:
Ta có: 2x2 + 2y2 + 2z2 + 4x + 8y + 6z + 3 = 0 hay x2 + y2 + z2 + 2x + 4y + 3z + \[\frac{3}{2}\] = 0.
Ta có: a2 + b2 + c2 – d > 0 nên đây là phương trình mặt cầu.
Vậy chọn C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bề mặt của lều (S): (x – 3)2 + (y – 3)2 + (z – 1)2 = 9 có tâm I(3; 3; 1), bán kính R = 3.
Gọi d là đường thẳng đi qua I và vuông góc với (P): x = 2.
Ta có vectơ chỉ phương của d là \[{\overrightarrow a _d} = \left( {1;0;0} \right)\].
Suy ra d có phương trình tham số \[\left\{ \begin{array}{l}x = 3 + t\\y = 3\\z = 1\end{array} \right.\].
Gọi A(3 + t; 3; 1) là hình chiếu vuông góc của I trên (P). Thay tọa độ điểm A vào phương trình (P): x = 2, ta được (3 + t) – 2 = 0 hay t = −1, suy ra A(2; 3; 1).
Bán kính r1 của đường tròn có cửa lều là:
r1 = \[\sqrt {{R^2} - I{A^2}} = \sqrt {9 - 1} = 2\sqrt 2 \].
Vậy đường tròn cửa lều có tâm A(2; 3; 1), bán kính r1 = \[2\sqrt 2 \].
Gọi d' là đường thẳng đi qua I và vuông góc với (Q): z = 0.
Ta có vectơ chỉ phương của d' là \[{\overrightarrow u _{d'}}\]= (0; 0; 1)
Suy ra d' có phương trình tham số: \[\left\{ \begin{array}{l}x = 3\\y = 3\\z = 1 + t.\end{array} \right.\]
Gọi B(3; 3; 1 + t) là hình chiếu vuông góc của I trên (Q). Thay tọa độ của điểm B vào phương trình (Q): z = 0 ta được 1 + t = 0, suy ra t = −1, suy ra B(3; 3; 0).
Bán kính r1 của đường tròn sàn lều là: r2 = \[\sqrt {{R^2} - I{B^2}} = \sqrt {9 - 1} = 2\sqrt 2 \].
Vậy đường tròn sàn lều có tâm B(3; 3; 0), bán kính r2 = \[2\sqrt 2 \].
Lời giải
Mặt cầu (S) có phương trình x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 (1).
Thay tọa độ bốn đỉnh của tứ diện vào (1), ta được:
\[\left\{ \begin{array}{l}{2^2} + {0^2} + {0^2} - 2a.2 - 2b.0 - 2c.0 + d = 0\\{0^2} + {4^2} + {0^2} - 2a.0 - 2b.4 - 2c.0 + d = 0\\{0^2} + {0^2} + {4^2} - 2a.0 - 2b.0 - 2c.4 + d = 0\\{0^2} + {0^2} + {0^2} - 2a.0 - 2b.0 - 2c.0 + d = 0\end{array} \right.\]
⇔ \[\left\{ \begin{array}{l}4 - 4a + d = 0\\16 - 8b + d = 0\\16 - 8c + d = 0\\d = 0\end{array} \right.\]
⇔ \[\left\{ \begin{array}{l}a = 1\\b = 2\\c = 2\\d = 0\end{array} \right.\].
Vậy phương trình của (S) là: x2 + y2 + z2 – 2x – 4y – 4z = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.