Câu hỏi:
19/09/2024 136Cho điểm G(1; 2; 3). Viết phương trình mặt phẳng (P) đi qua G và cắt Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đặt A(a; 0; 0), B(0; b; 0), C(0; 0; c).
Ta có: G(1; 2; 3) là trọng tâm tam giác ABC.
Có \[\left\{ \begin{array}{l}\frac{{a + 0 + 0}}{3} = 1\\\frac{{0 + b + 0}}{3} = 2\\\frac{{0 + 0 + c}}{3} = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 3\\b = 6\\c = 9\end{array} \right.\] ⇒ A(3; 0; 0), B(0; 6; 0), C(0; 0; 9).
Vậy phương trình (P) là: \[\frac{x}{3} + \frac{y}{6} + \frac{z}{9} = 1\] hay 6x + 3y + 2z – 18 = 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Người ta muốn thiết kế một lều cắm trại có dạng là một phần mặt cầu bằng phần mềm 3D.
Cho biết phương trình bề mặt của lều là (S): (x – 3)2 + (y – 3)2 + (z – 1)2 = 9, phương trình mặt phẳng chứa cửa lều là (P): x = 2, phương trình chứa sàn lêu là (Q): z = 0. Tìm tâm và bán kính đường tròn cửa lều và đường tròn sàn lều.
Câu 2:
Cho hai điểm M(1; −1; 5) và N(0; 0; 1). Viết phương trình mặt phẳng (Q) chứa M, N và song song với trục Oy.
Câu 3:
Trong không gian Oxyz (đơn vị trên các trục tọa độ là centimét), đầu in phun của một máy in 3D đang đặt tại điểm M(5; 0; 35). Tính khoảng cách từ đầu in phun đến khay đặt vật in có phương trình z – 5 = 0.
Câu 5:
Cho đường thẳng d: \[\left\{ \begin{array}{l}x = 1 + t\\y = 2t\\z = - 1\end{array} \right.\], điểm M(1; 2; 1) và mặt phẳng (P): 2x + y – 2z – 1 = 0.
Viết phương trình đường thẳng ∆ đi qua M, song song với (P) và vuông góc với d.
Câu 6:
Cho các điểm A(2; 0; 0), B(0; 4; 0), C(0; 0; 4). Viết phương trình mặt cầu ngoại tiếp tứ diện OABC (O là gốc tọa độ).
về câu hỏi!