Câu hỏi:
19/09/2024 700
Bạn Minh có 2 hộp đựng thẻ. Hộp thứ nhất có 4 thẻ vàng và 1 thẻ đỏ. Hộp thứ hai có 6 thẻ vàng và 2 thẻ đỏ. Các thẻ có cùng kích thước. Minh chọn ngẫu nhiên từ hộp thứ nhất 2 thẻ và bỏ vào hộp thứ hai. Sau đó, minh lại chọn ngẫu nhiên từ hộp thứ hai ra 2 thẻ.
a) Tính xác suất để 2 thẻ được chọn ra từ hộp thứ hai đều có màu đỏ.
b) Biết rằng 2 thẻ được chọn ra từ hộp thứ hai đều có màu đỏ, tính xác suất của biến cố 2 thẻ lấy ra từ hộp thứ nhất có cùng màu.
Bạn Minh có 2 hộp đựng thẻ. Hộp thứ nhất có 4 thẻ vàng và 1 thẻ đỏ. Hộp thứ hai có 6 thẻ vàng và 2 thẻ đỏ. Các thẻ có cùng kích thước. Minh chọn ngẫu nhiên từ hộp thứ nhất 2 thẻ và bỏ vào hộp thứ hai. Sau đó, minh lại chọn ngẫu nhiên từ hộp thứ hai ra 2 thẻ.
a) Tính xác suất để 2 thẻ được chọn ra từ hộp thứ hai đều có màu đỏ.
b) Biết rằng 2 thẻ được chọn ra từ hộp thứ hai đều có màu đỏ, tính xác suất của biến cố 2 thẻ lấy ra từ hộp thứ nhất có cùng màu.
Quảng cáo
Trả lời:
a) Ta có sơ đồ hình cây như sau:

Gọi A là biến cố “2 thẻ được chọn từ hộp thứ hai đều có màu đỏ” và B là biến cố “2 thẻ lấy ra từ hộp thứ nhất có cùng màu”.
Như vậy, từ sơ đồ hình cây, ta có xác suất 2 thẻ được chọn ra từ hộp thứ hai đều có màu đỏ là P(A) = \[\frac{3}{5}.\frac{1}{{45}} + \frac{2}{5}.\frac{1}{{15}} = 0,04\].
b) Xác suất để 2 thẻ lấy ra từ hộp thứ nhất có cùng màu là P(B) = \[\frac{3}{5}\]= 0,6.
Xác suất để 2 thẻ được chọn từ hộp thứ hai đều có màu đỏ, biết rằng 2 thẻ lấy ra từ hộp thứ nhất có cùng màu là P(A | B) = \[\frac{1}{{45}}\].
Theo công thức Bayes, xác suất của biến cố 2 thẻ lấy ra từ hộp thứ nhất có cùng màu, biết rằng 2 thẻ được chọn ra từ hộp thứ hai đều có màu đỏ là:
\[P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,6.\frac{1}{{45}}}}{{0,04}} = \frac{1}{3}\]≈ 0,333.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Do P(A) = 0,4 nên P(\[\overline A \]) = 1 – 0,4 = 0,6.
Theo công thức xác suất toàn phần, ta có:
P(B) = P(A)P(B | A) + P(\[\overline A \])P(B | \[\overline A \]) = 0,4.0,3 + 0,6.0,2 = 0,24.
Từ đó, suy ra ta có P(\[\overline B \]) = 1 – P(B) = 1 – 0,24 = 0,76.
Mặt khác, do P(B | A) = 0,3 nên P(\[\overline B \]| A) = 1 – 0,3 = 0,7.
Theo công thức Bayes, ta có: \[P\left( {A|\overline B } \right) = \frac{{P\left( A \right).P\left( {\overline B |A} \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,4.0,7}}{{0,76}} = \frac{7}{{19}}\] ≈ 0,368.
Lời giải
Gọi A là biến cố “Một người ở trại dưỡng lão mắc bệnh tim mạch” và B là biến cố “Một người ở trại dưỡng lão hút thuốc”.
Do ở trại dưỡng lão đó, tỉ lệ người đó mắc bệnh tim mạch là 25% nên
P(A) = 0,25 và P(\[\overline A \]) = 1 – 0,25 = 0,75.
Gọi tỉ lệ người hút thuốc trong số những người không mắc bệnh tim mạch là a (0 ≤ a ≤ 1) Do tỉ lệ người hút thuốc trong số những người mắc bệnh tim mạch gấp 2 lần tỉ lệ người hút thuốc trong số những người không mắc bệnh tim mạch nên P( B | \[\overline A \]) = a và P(B | A) = 2a.
Theo công thức xác suất toàn phần, xác suất một người ở trại dưỡng lão hút thuốc là
P(A | B) = \[P\left( {A|B} \right) = \frac{{P\left( A \right)P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,25.2a}}{{1,25a}} = 0,4.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.