Câu hỏi:

19/09/2024 872

Một công ty công nghệ cung cấp hai phiên bản Basic và Pro của một phần mềm. Tỉ lệ người sử dụng hai phiên bản này lần lượt là 80% và 20%. Kết quả điều tra cho thấy có 30% người dùng phiên bản Basic sẽ mua bản cập nhật sau 1 năm sử dụng; còn tỉ lệ này của phiên bản Pro là 50%.

Chọn ngẫu nhiên một người sử dụng phần mềm của công ty.

a) Tính xác suất để người này mua bản cập nhật sau 1 năm sử dụng.

b) Biết người dùng mua bản cập nhật sau 1 năm sử dụng, tính xác suất người đó sử dụng phiên bản Basic ở năm đầu tiên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Gọi A là biến cố “Người dùng mua bản cập nhật sau 1 năm sử dụng” và B là biến cố “Người dùng sử dụng phiên bản Basic ở năm đầu tiên”.

Do tỉ lệ người sử dụng hai phiên bản Basic và Pro lần lượt là 80% và 20% nên

P(B) = 0,8 và P(\[\overline B \]) = 0,2.

Qua kết quả điều tra, có 30% người dùng phiên bản Basic sẽ mua bản cập nhật sau 1 năm sử dụng, còn tỉ lệ của phiên bản Pro là 50% nên P(A | B) = 0,3 và P(A |\[\overline B \]) = 0,5.

Theo công thức xác suất toàn phần, xác suất người được chọn mua bản cập nhật sau 1 năm sử dụng là:

P(A) = P(B)P(A | B) + P( \[\overline B \])P(A | \[\overline B \]) = 0,8.0,3 + 0,2.0,5 = 0,34.

b) xác suất người được chọn sử dụng phiên bản Basic ở năm đầu tiên, biết rằng người dùng đó mua bản cập nhật sau 1 năm sử dụng là

\[P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,8.0,3}}{{0,34}} = \frac{{12}}{{17}}\] ≈ 0,706.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do P(A) = 0,4 nên P(\[\overline A \]) = 1 – 0,4 = 0,6.

Theo công thức xác suất toàn phần, ta có:

P(B) = P(A)P(B | A) + P(\[\overline A \])P(B | \[\overline A \]) = 0,4.0,3 + 0,6.0,2 = 0,24.

Từ đó, suy ra ta có P(\[\overline B \]) = 1 – P(B) = 1 – 0,24 = 0,76.

Mặt khác, do P(B | A) = 0,3 nên P(\[\overline B \]| A) = 1 – 0,3 = 0,7.

Theo công thức Bayes, ta có: \[P\left( {A|\overline B } \right) = \frac{{P\left( A \right).P\left( {\overline B |A} \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,4.0,7}}{{0,76}} = \frac{7}{{19}}\] ≈ 0,368.

Lời giải

Gọi A là biến cố “Một người ở trại dưỡng lão mắc bệnh tim mạch” và B là biến cố “Một người ở trại dưỡng lão hút thuốc”.

Do ở trại dưỡng lão đó, tỉ lệ người đó mắc bệnh tim mạch là 25% nên

P(A) = 0,25 và P(\[\overline A \]) = 1 – 0,25 = 0,75.

Gọi tỉ lệ người hút thuốc trong số những người không mắc bệnh tim mạch là a (0 ≤ a ≤ 1) Do tỉ lệ người hút thuốc trong số những người mắc bệnh tim mạch gấp 2 lần tỉ lệ người hút thuốc trong số những người không mắc bệnh tim mạch nên P( B | \[\overline A \]) = a và P(B | A) = 2a.

Theo công thức xác suất toàn phần, xác suất một người ở trại dưỡng lão hút thuốc là

P(A | B) = \[P\left( {A|B} \right) = \frac{{P\left( A \right)P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,25.2a}}{{1,25a}} = 0,4.\]