Câu hỏi:

19/09/2024 1,927

Khảo sát ở một trường đại học có 35% số máy tính sử dụng hệ điều hành X. Tỉ lệ máy tính bị nhiễm virus trong số các máy dùng hệ điều hành X gấp 4 lần tỉ lệ máy tính bị nhiễm virus trong số các máy không dùng hệ điều hành X. Tính xác suất một máy tính sử dụng hệ điều hành X, biết rằng máy tính đó bị nhiễm virus.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi A là biến cố “Một máy tính sử dụng hệ điều hành X” và B là biến cố “Một máy tính bị nhiễm virus”.

Do ở trường đại học đó có 35% số máy tính sử dụng hệ điều hành X nên P(A) = 0,35 và P(\[\overline A \]) = 1 – 0,35 = 0,65.

Gọi tỉ lệ máy tính bị nhiễm virus trong số các máy không dùng hệ điều hành X là a

(0 ≤ a ≤ 1). Do tỉ lệ máy tính bị nhiễm virus trong số các ấy không dùng hệ điều hành X nên P(B | \[\overline A \]) = a và P(B | A) = 4a.

Theo công thức xác suất toàn phần, xác suất một máy tính tại trường đại học đó bị nhiễm virus là

P(B) = P(A)P(B | A) + P(\[\overline A \])P(B | \[\overline A \]) = 0,35.4a + 0,65.a = 2,05a.

Theo công thức Bayes, xác suất một máy tính sử dụng hệ điều hành X, biết rằng máy tính đó nhiễm virus là: \[P\left( {A|B} \right) = \frac{{P\left( A \right)P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,35.4a}}{{2,05a}} = \frac{{28}}{{41}}\] ≈ 0,683.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do P(A) = 0,4 nên P(\[\overline A \]) = 1 – 0,4 = 0,6.

Theo công thức xác suất toàn phần, ta có:

P(B) = P(A)P(B | A) + P(\[\overline A \])P(B | \[\overline A \]) = 0,4.0,3 + 0,6.0,2 = 0,24.

Từ đó, suy ra ta có P(\[\overline B \]) = 1 – P(B) = 1 – 0,24 = 0,76.

Mặt khác, do P(B | A) = 0,3 nên P(\[\overline B \]| A) = 1 – 0,3 = 0,7.

Theo công thức Bayes, ta có: \[P\left( {A|\overline B } \right) = \frac{{P\left( A \right).P\left( {\overline B |A} \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,4.0,7}}{{0,76}} = \frac{7}{{19}}\] ≈ 0,368.

Lời giải

Gọi A là biến cố “Một người ở trại dưỡng lão mắc bệnh tim mạch” và B là biến cố “Một người ở trại dưỡng lão hút thuốc”.

Do ở trại dưỡng lão đó, tỉ lệ người đó mắc bệnh tim mạch là 25% nên

P(A) = 0,25 và P(\[\overline A \]) = 1 – 0,25 = 0,75.

Gọi tỉ lệ người hút thuốc trong số những người không mắc bệnh tim mạch là a (0 ≤ a ≤ 1) Do tỉ lệ người hút thuốc trong số những người mắc bệnh tim mạch gấp 2 lần tỉ lệ người hút thuốc trong số những người không mắc bệnh tim mạch nên P( B | \[\overline A \]) = a và P(B | A) = 2a.

Theo công thức xác suất toàn phần, xác suất một người ở trại dưỡng lão hút thuốc là

P(A | B) = \[P\left( {A|B} \right) = \frac{{P\left( A \right)P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,25.2a}}{{1,25a}} = 0,4.\]