Câu hỏi:
19/09/2024 1,304Khảo sát ở một trường đại học có 35% số máy tính sử dụng hệ điều hành X. Tỉ lệ máy tính bị nhiễm virus trong số các máy dùng hệ điều hành X gấp 4 lần tỉ lệ máy tính bị nhiễm virus trong số các máy không dùng hệ điều hành X. Tính xác suất một máy tính sử dụng hệ điều hành X, biết rằng máy tính đó bị nhiễm virus.
Quảng cáo
Trả lời:
Gọi A là biến cố “Một máy tính sử dụng hệ điều hành X” và B là biến cố “Một máy tính bị nhiễm virus”.
Do ở trường đại học đó có 35% số máy tính sử dụng hệ điều hành X nên P(A) = 0,35 và P(\[\overline A \]) = 1 – 0,35 = 0,65.
Gọi tỉ lệ máy tính bị nhiễm virus trong số các máy không dùng hệ điều hành X là a
(0 ≤ a ≤ 1). Do tỉ lệ máy tính bị nhiễm virus trong số các ấy không dùng hệ điều hành X nên P(B | \[\overline A \]) = a và P(B | A) = 4a.
Theo công thức xác suất toàn phần, xác suất một máy tính tại trường đại học đó bị nhiễm virus là
P(B) = P(A)P(B | A) + P(\[\overline A \])P(B | \[\overline A \]) = 0,35.4a + 0,65.a = 2,05a.
Theo công thức Bayes, xác suất một máy tính sử dụng hệ điều hành X, biết rằng máy tính đó nhiễm virus là: \[P\left( {A|B} \right) = \frac{{P\left( A \right)P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,35.4a}}{{2,05a}} = \frac{{28}}{{41}}\] ≈ 0,683.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai biến cố A và B có P(A) = 0,4; P(B | \(\overline A \)) = 0,2; P(B | A) = 0,3. Tính P(A | \(\overline B \)).
Câu 2:
Câu 3:
Điều tra ở một khu vực cho thấy có 35% tài xế ô tô là nữ. Có 12% tài xế nữ sử dụng xe 7 chỗ và 25% tài xế nam sử dụng xe 7 chỗ. Chọn ngẫu nhiên 1 tài xế ở khu vực đó.
a) Tính xác suất tài xế đó sử dụng xe 7 chỗ.
b) Biết tài xế sử dụng xe 7 chỗ, tính xác suất đó là tài xế nam.
Câu 4:
Một công ty công nghệ cung cấp hai phiên bản Basic và Pro của một phần mềm. Tỉ lệ người sử dụng hai phiên bản này lần lượt là 80% và 20%. Kết quả điều tra cho thấy có 30% người dùng phiên bản Basic sẽ mua bản cập nhật sau 1 năm sử dụng; còn tỉ lệ này của phiên bản Pro là 50%.
Chọn ngẫu nhiên một người sử dụng phần mềm của công ty.
a) Tính xác suất để người này mua bản cập nhật sau 1 năm sử dụng.
b) Biết người dùng mua bản cập nhật sau 1 năm sử dụng, tính xác suất người đó sử dụng phiên bản Basic ở năm đầu tiên.
Câu 5:
Bạn Minh có 2 hộp đựng thẻ. Hộp thứ nhất có 4 thẻ vàng và 1 thẻ đỏ. Hộp thứ hai có 6 thẻ vàng và 2 thẻ đỏ. Các thẻ có cùng kích thước. Minh chọn ngẫu nhiên từ hộp thứ nhất 2 thẻ và bỏ vào hộp thứ hai. Sau đó, minh lại chọn ngẫu nhiên từ hộp thứ hai ra 2 thẻ.
a) Tính xác suất để 2 thẻ được chọn ra từ hộp thứ hai đều có màu đỏ.
b) Biết rằng 2 thẻ được chọn ra từ hộp thứ hai đều có màu đỏ, tính xác suất của biến cố 2 thẻ lấy ra từ hộp thứ nhất có cùng màu.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận