Câu hỏi:

23/09/2024 280

Thể tích của khối có hai mặt tam giác cân bằng nhau và bảy mặt hình chữ nhật với kích thước được cho như hình vẽ bên là bao nhiêu?

Thể tích của khối có hai mặt tam giác cân bằng nhau và bảy mặt hình chữ nhật với kích thước được cho như hình vẽ bên là bao nhiêu? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp số: 1265.

Khối đã cho được tạo thành từ khối lăng trụ và khối hộp chữ nhật.

Thể tích khối lăng trụ là \(\frac{1}{2} \cdot 7 \cdot 11 \cdot 10 = 385\) (đvtt).

Thể tích khối hộp chữ nhật là \(11 \cdot 10 \cdot 8 = 880\) (đvtt).

Thể tích của khối đã cho là \(385 + 880 = 1265\) (đvtt).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: 45.

\({{\rm{B}}^\prime }{\rm{B}} \bot ({\rm{ABCD}})\) nên góc nhị diện \(\left[ {{\rm{A}},{\rm{BB}},{{\rm{D}}^\prime }} \right]\) có số đo bằng \(\widehat {{\rm{ABD}}}.\)

Lời giải

Đáp số: 0,75.

Cho hình chóp S.ABCD có \(SA = a\sqrt 3 ,SA \bot (ABCD),ABCD\) là hình vuông cạnh a. Gọi E là điểm thoả mãn \(\overrightarrow {{\rm{AE}}}  =  - \frac{1}{2}\overrightarrow {{\rm{AB}}} .\) Khoảng cách từ điểm B đến mặt phẳng \(({\rm{SDE}})\) bằng \({\rm{x}}\sqrt 3 {\rm{a}}\) với x là số thực. Giá trị của x là bao nhiêu? (ảnh 1)

+) \(\frac{{{\rm{d}}({\rm{B}},({\rm{SDE}}))}}{{{\rm{d}}({\rm{A}},({\rm{SDE}}))}} = \frac{{{\rm{BE}}}}{{{\rm{AE}}}} = 3 \Rightarrow {\rm{d}}({\rm{B}},({\rm{SDE}})) = 3\;{\rm{d}}(\;{\rm{A}},({\rm{SDE}})).\)(1)

+) Kẻ \({\rm{AM}} \bot {\rm{DE}}({\rm{M}} \in {\rm{DE}});{\rm{AH}} \bot {\rm{SM}}({\rm{H}} \in {\rm{SM}})\)

\( \Rightarrow {\rm{AH}} \bot ({\rm{SDE}}) \Rightarrow {\rm{d}}({\rm{A}},({\rm{SDE}})) = {\rm{AH}}.\)(2)

+) Ta có: \(\frac{1}{{{\rm{A}}{{\rm{H}}^2}}} = \frac{1}{{{\rm{A}}{{\rm{S}}^2}}} + \frac{1}{{{\rm{A}}{{\rm{M}}^2}}} = \frac{1}{{{\rm{A}}{{\rm{S}}^2}}} + \frac{1}{{{\rm{A}}{{\rm{D}}^2}}} + \frac{1}{{{\rm{A}}{{\rm{E}}^2}}}\)\( = \frac{1}{{{{(a\sqrt 3 )}^2}}} + \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {\frac{a}{2}} \right)}^2}}} = \frac{{16}}{{3{a^2}}}\)

\( \Rightarrow {\rm{AH}} = \frac{{{\rm{a}}\sqrt 3 }}{4}\)(3)

 Từ \((1),(2),(3) \Rightarrow d(B,(SDE)) = \frac{{3\sqrt 3 a}}{4} = 0,75 \cdot \sqrt 3 a.\)