Câu hỏi:

23/09/2024 355

Một tờ giấy được cắt sẵn để gấp thành một hình hộp chữ nhật với các kích thước như hình vẽ bên. Thể tích của khối hộp được gấp là bao nhiêu \({\rm{c}}{{\rm{m}}^3}\) ?

Một tờ giấy được cắt sẵn để gấp thành một hình hộp chữ nhật với các kích thước như hình vẽ bên. Thể tích của khối hộp được gấp là bao nhiêu (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp số: 60.

Khi gấp giấy ta được khối hộp có thể tích là \(2 \cdot 5 \cdot 6 = 60\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: 45.

\({{\rm{B}}^\prime }{\rm{B}} \bot ({\rm{ABCD}})\) nên góc nhị diện \(\left[ {{\rm{A}},{\rm{BB}},{{\rm{D}}^\prime }} \right]\) có số đo bằng \(\widehat {{\rm{ABD}}}.\)

Lời giải

Đáp số: 0,75.

Cho hình chóp S.ABCD có \(SA = a\sqrt 3 ,SA \bot (ABCD),ABCD\) là hình vuông cạnh a. Gọi E là điểm thoả mãn \(\overrightarrow {{\rm{AE}}}  =  - \frac{1}{2}\overrightarrow {{\rm{AB}}} .\) Khoảng cách từ điểm B đến mặt phẳng \(({\rm{SDE}})\) bằng \({\rm{x}}\sqrt 3 {\rm{a}}\) với x là số thực. Giá trị của x là bao nhiêu? (ảnh 1)

+) \(\frac{{{\rm{d}}({\rm{B}},({\rm{SDE}}))}}{{{\rm{d}}({\rm{A}},({\rm{SDE}}))}} = \frac{{{\rm{BE}}}}{{{\rm{AE}}}} = 3 \Rightarrow {\rm{d}}({\rm{B}},({\rm{SDE}})) = 3\;{\rm{d}}(\;{\rm{A}},({\rm{SDE}})).\)(1)

+) Kẻ \({\rm{AM}} \bot {\rm{DE}}({\rm{M}} \in {\rm{DE}});{\rm{AH}} \bot {\rm{SM}}({\rm{H}} \in {\rm{SM}})\)

\( \Rightarrow {\rm{AH}} \bot ({\rm{SDE}}) \Rightarrow {\rm{d}}({\rm{A}},({\rm{SDE}})) = {\rm{AH}}.\)(2)

+) Ta có: \(\frac{1}{{{\rm{A}}{{\rm{H}}^2}}} = \frac{1}{{{\rm{A}}{{\rm{S}}^2}}} + \frac{1}{{{\rm{A}}{{\rm{M}}^2}}} = \frac{1}{{{\rm{A}}{{\rm{S}}^2}}} + \frac{1}{{{\rm{A}}{{\rm{D}}^2}}} + \frac{1}{{{\rm{A}}{{\rm{E}}^2}}}\)\( = \frac{1}{{{{(a\sqrt 3 )}^2}}} + \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {\frac{a}{2}} \right)}^2}}} = \frac{{16}}{{3{a^2}}}\)

\( \Rightarrow {\rm{AH}} = \frac{{{\rm{a}}\sqrt 3 }}{4}\)(3)

 Từ \((1),(2),(3) \Rightarrow d(B,(SDE)) = \frac{{3\sqrt 3 a}}{4} = 0,75 \cdot \sqrt 3 a.\)