Câu hỏi:

24/09/2024 4,409

Cho hình chóp đều \({\rm{S}}.{\rm{ABCD}}\) có tất cả các cạnh bằng nhau. Góc giữa đường thẳng SA và mặt phẳng ABCD là \({{\rm{n}}^o }\) với n là số thực. Giá trị của n bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp số: 45.

Gọi O là hình chiếu của S trên mặt phẳng \({\rm{ABCD}},{\rm{O}}\) là tâm của hình vuông ABCD.

Tam giác SAC cân tại S, ngoài ra \({\rm{S}}{{\rm{A}}^2} + {\rm{S}}{{\rm{C}}^2} = {\rm{A}}{{\rm{B}}^2} + {\rm{B}}{{\rm{C}}^2} = {\rm{A}}{{\rm{C}}^2}.\)

Tam giác SAC vuông cân tại S.

Góc giữa đường thẳng SA và mặt phẳng ABCD bằng \(\widehat {{\rm{SAO}}} = \widehat {{\rm{SAC}}} = {45^o }.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn đáp án C

Lời giải

Đáp số: 42,4.

Một vật thể có dạng khối tròn xoay được tạo thành khi quay hình phẳng D quanh trục \(\Delta \) một vòng, biết rằng: i) Hình phẳng D giới hạn bởi một parabol \(({\rm{P}})\) và đường thẳng a. ii) Đường thẳng a vuông góc với đường thẳng \(\Delta \) là trục đối xứng của parabol \(({\rm{P}}).\) iii) Đường thẳng a cắt parabol \(({\rm{P}})\) tại hai điểm có khoảng cách 6 dm, khoảng cách từ đỉnh của \(({\rm{P}})\) đến \(\Delta \) bằng 3 dm. (ảnh 1)

Gắn hệ toạ độ Oxy với đơn vị của mỗi trục là dm, trục Ox trùng đường thẳng \(\Delta \), gốc toạ độ trùng đỉnh parabol (Hình bên).

Parabol có phương trình chính tắc \({{\rm{y}}^2} = 2{\rm{px}}.\)

Parabol đi qua điểm \({\rm{A}}(3;3)\) nên \({3^2} = 2\) p. 3, suy ra \(2{\rm{p}} = 3.\)

Phương trình parabol là \({y^2} = 3x.\)

Một nửa parabol phía trên trục Ox là đồ thị hàm số \({\rm{y}} = {\rm{f}}({\rm{x}}) = \sqrt {3{\rm{x}}} .\)

 Thể tích của vật thể bằng

\(\pi \int_0^3 {({\rm{f}}(} {\rm{x}}){)^2}{\rm{dx}} = \pi \int_0^3 3 {\rm{xdx}} = \left. {\pi \frac{{3{{\rm{x}}^2}}}{2}} \right|_0^3 = \frac{{27\pi }}{2}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP