Câu hỏi:

24/09/2024 5,463

Một hộp chứa 15 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 15. Bạn An lấy ra lần lượt 3 thẻ từ hộp. Thẻ lấy ra không được hoàn lại hộp. Tính xác suất của biến cố: "Lần thứ ba An lấy được thẻ ghi số lẻ, biết rằng lần hai An lấy được thẻ ghi số chẵn" (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp số: 0,57.

Gọi Ai là biến cố lần thứ i lấy được thẻ chẵn ( \({\rm{i}} = 1,2,3\) ). Ta cần tính

\({\rm{P}}\left( {\overline {{{\rm{A}}_3}} \mid {{\rm{A}}_2}} \right) = \frac{{{\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}} \right)}}{{{\rm{P}}\left( {{{\rm{A}}_2}} \right)}}\)

\({\rm{P}}\left( {{{\rm{A}}_1}} \right) = \frac{7}{{15}},{\rm{P}}\left( {\overline {{{\rm{A}}_1}} } \right) = \frac{8}{{15}},{\rm{P}}\left( {{{\rm{A}}_2}\mid {{\rm{A}}_1}} \right) = \frac{6}{{14}} = \frac{3}{7},{\rm{P}}\left( {{{\rm{A}}_2}\mid \overline {{{\rm{A}}_1}} } \right) = \frac{7}{{14}} = \frac{1}{2}\)

\({\rm{P}}\left( {{{\rm{A}}_2}} \right) = {\rm{P}}\left( {{{\rm{A}}_1}} \right){\rm{P}}\left( {{{\rm{A}}_2}\mid {{\rm{A}}_1}} \right) + {\rm{P}}\left( {\overline {{{\rm{A}}_1}} } \right){\rm{P}}\left( {{{\rm{A}}_2}\mid \overline {{{\rm{A}}_1}} } \right) = \frac{7}{{15}} \cdot \frac{3}{7} + \frac{8}{{15}} \cdot \frac{1}{2} = \frac{7}{{15}}\)

\({\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}} \right) = {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}\;{{\rm{A}}_1}} \right) + {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}\overline {{{\rm{A}}_1}} } \right)\)

(sử dụng tính chất \({\rm{P}}({\rm{A}}) = {\rm{P}}\left( {{\rm{A}}{{\rm{A}}_1}} \right) + {\rm{P}}\left( {{\rm{A}}\overline {{{\rm{A}}_1}} } \right)\) với \(\left. {{\rm{A}} = \overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}} \right)\).

\({\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}\;{{\rm{A}}_1}} \right) = {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \mid {{\rm{A}}_2}\;{{\rm{A}}_1}} \right){\rm{P}}\left( {{{\rm{A}}_2}\;{{\rm{A}}_1}} \right) = {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \mid {{\rm{A}}_2}\;{{\rm{A}}_1}} \right){\rm{P}}\left( {{{\rm{A}}_2}\mid {{\rm{A}}_1}} \right){\rm{P}}\left( {{{\rm{A}}_1}} \right)\)

\( = \frac{8}{{13}} \cdot \frac{6}{{14}} \cdot \frac{7}{{15}}\)

\({\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2} \cdot \overline {{{\rm{A}}_1}} } \right) = {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \mid {{\rm{A}}_2}\overline {{{\rm{A}}_1}} } \right){\rm{P}}\left( {{{\rm{A}}_2}\overline {{{\rm{A}}_1}} } \right) = {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \mid {{\rm{A}}_2}\overline {{{\rm{A}}_1}} } \right){\rm{P}}\left( {{{\rm{A}}_2}\mid \overline {{{\rm{A}}_1}} } \right){\rm{P}}\left( {\overline {{{\rm{A}}_1}} } \right)\)

\( = \frac{7}{{13}} \cdot \frac{7}{{14}} \cdot \frac{8}{{15}}.\)

\({\rm{P}}\left( {\overline {{{\rm{A}}_3}} \mid {{\rm{A}}_2}} \right) = \frac{{{\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}} \right)}}{{{\rm{P}}\left( {{{\rm{A}}_2}} \right)}} = \frac{{{\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}\;{{\rm{A}}_1}} \right) + {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}\overline {{{\rm{A}}_1}} } \right)}}{{{\rm{P}}\left( {{{\rm{A}}_2}} \right)}} = \frac{{\frac{8}{{13}} \cdot \frac{6}{{14}} \cdot \frac{7}{{15}} + \frac{7}{{13}} \cdot \frac{7}{{14}} \cdot \frac{8}{{15}}}}{{\frac{7}{{15}}}}\)

\( = \frac{{\frac{{7.8}}{{14 \cdot 15}}}}{{\frac{7}{{15}}}} = \frac{8}{{14}} \approx 0,57.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Trong không gian với hệ tọa độ Oxyz, phương trình nào sau đây là phương trình tổng quát của mặt phẳng? 

Lời giải

Chọn đáp án C

Lời giải

Đáp số: 42,4.

Một vật thể có dạng khối tròn xoay được tạo thành khi quay hình phẳng D quanh trục \(\Delta \) một vòng, biết rằng: i) Hình phẳng D giới hạn bởi một parabol \(({\rm{P}})\) và đường thẳng a. ii) Đường thẳng a vuông góc với đường thẳng \(\Delta \) là trục đối xứng của parabol \(({\rm{P}}).\) iii) Đường thẳng a cắt parabol \(({\rm{P}})\) tại hai điểm có khoảng cách 6 dm, khoảng cách từ đỉnh của \(({\rm{P}})\) đến \(\Delta \) bằng 3 dm. (ảnh 1)

Gắn hệ toạ độ Oxy với đơn vị của mỗi trục là dm, trục Ox trùng đường thẳng \(\Delta \), gốc toạ độ trùng đỉnh parabol (Hình bên).

Parabol có phương trình chính tắc \({{\rm{y}}^2} = 2{\rm{px}}.\)

Parabol đi qua điểm \({\rm{A}}(3;3)\) nên \({3^2} = 2\) p. 3, suy ra \(2{\rm{p}} = 3.\)

Phương trình parabol là \({y^2} = 3x.\)

Một nửa parabol phía trên trục Ox là đồ thị hàm số \({\rm{y}} = {\rm{f}}({\rm{x}}) = \sqrt {3{\rm{x}}} .\)

 Thể tích của vật thể bằng

\(\pi \int_0^3 {({\rm{f}}(} {\rm{x}}){)^2}{\rm{dx}} = \pi \int_0^3 3 {\rm{xdx}} = \left. {\pi \frac{{3{{\rm{x}}^2}}}{2}} \right|_0^3 = \frac{{27\pi }}{2}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay