Câu hỏi:

24/09/2024 959

Một hộp chứa 15 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 15. Bạn An lấy ra lần lượt 3 thẻ từ hộp. Thẻ lấy ra không được hoàn lại hộp. Tính xác suất của biến cố: "Lần thứ ba An lấy được thẻ ghi số lẻ, biết rằng lần hai An lấy được thẻ ghi số chẵn" (làm tròn kết quả đến hàng phần trăm).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp số: 0,57.

Gọi Ai là biến cố lần thứ i lấy được thẻ chẵn ( \({\rm{i}} = 1,2,3\) ). Ta cần tính

\({\rm{P}}\left( {\overline {{{\rm{A}}_3}} \mid {{\rm{A}}_2}} \right) = \frac{{{\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}} \right)}}{{{\rm{P}}\left( {{{\rm{A}}_2}} \right)}}\)

\({\rm{P}}\left( {{{\rm{A}}_1}} \right) = \frac{7}{{15}},{\rm{P}}\left( {\overline {{{\rm{A}}_1}} } \right) = \frac{8}{{15}},{\rm{P}}\left( {{{\rm{A}}_2}\mid {{\rm{A}}_1}} \right) = \frac{6}{{14}} = \frac{3}{7},{\rm{P}}\left( {{{\rm{A}}_2}\mid \overline {{{\rm{A}}_1}} } \right) = \frac{7}{{14}} = \frac{1}{2}\)

\({\rm{P}}\left( {{{\rm{A}}_2}} \right) = {\rm{P}}\left( {{{\rm{A}}_1}} \right){\rm{P}}\left( {{{\rm{A}}_2}\mid {{\rm{A}}_1}} \right) + {\rm{P}}\left( {\overline {{{\rm{A}}_1}} } \right){\rm{P}}\left( {{{\rm{A}}_2}\mid \overline {{{\rm{A}}_1}} } \right) = \frac{7}{{15}} \cdot \frac{3}{7} + \frac{8}{{15}} \cdot \frac{1}{2} = \frac{7}{{15}}\)

\({\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}} \right) = {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}\;{{\rm{A}}_1}} \right) + {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}\overline {{{\rm{A}}_1}} } \right)\)

(sử dụng tính chất \({\rm{P}}({\rm{A}}) = {\rm{P}}\left( {{\rm{A}}{{\rm{A}}_1}} \right) + {\rm{P}}\left( {{\rm{A}}\overline {{{\rm{A}}_1}} } \right)\) với \(\left. {{\rm{A}} = \overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}} \right)\).

\({\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}\;{{\rm{A}}_1}} \right) = {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \mid {{\rm{A}}_2}\;{{\rm{A}}_1}} \right){\rm{P}}\left( {{{\rm{A}}_2}\;{{\rm{A}}_1}} \right) = {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \mid {{\rm{A}}_2}\;{{\rm{A}}_1}} \right){\rm{P}}\left( {{{\rm{A}}_2}\mid {{\rm{A}}_1}} \right){\rm{P}}\left( {{{\rm{A}}_1}} \right)\)

\( = \frac{8}{{13}} \cdot \frac{6}{{14}} \cdot \frac{7}{{15}}\)

\({\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2} \cdot \overline {{{\rm{A}}_1}} } \right) = {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \mid {{\rm{A}}_2}\overline {{{\rm{A}}_1}} } \right){\rm{P}}\left( {{{\rm{A}}_2}\overline {{{\rm{A}}_1}} } \right) = {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \mid {{\rm{A}}_2}\overline {{{\rm{A}}_1}} } \right){\rm{P}}\left( {{{\rm{A}}_2}\mid \overline {{{\rm{A}}_1}} } \right){\rm{P}}\left( {\overline {{{\rm{A}}_1}} } \right)\)

\( = \frac{7}{{13}} \cdot \frac{7}{{14}} \cdot \frac{8}{{15}}.\)

\({\rm{P}}\left( {\overline {{{\rm{A}}_3}} \mid {{\rm{A}}_2}} \right) = \frac{{{\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}} \right)}}{{{\rm{P}}\left( {{{\rm{A}}_2}} \right)}} = \frac{{{\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}\;{{\rm{A}}_1}} \right) + {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}\overline {{{\rm{A}}_1}} } \right)}}{{{\rm{P}}\left( {{{\rm{A}}_2}} \right)}} = \frac{{\frac{8}{{13}} \cdot \frac{6}{{14}} \cdot \frac{7}{{15}} + \frac{7}{{13}} \cdot \frac{7}{{14}} \cdot \frac{8}{{15}}}}{{\frac{7}{{15}}}}\)

\( = \frac{{\frac{{7.8}}{{14 \cdot 15}}}}{{\frac{7}{{15}}}} = \frac{8}{{14}} \approx 0,57.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một vật thể có dạng khối tròn xoay được tạo thành khi quay hình phẳng D quanh trục \(\Delta \) một vòng, biết rằng:

i) Hình phẳng D giới hạn bởi một parabol \(({\rm{P}})\) và đường thẳng a.

ii) Đường thẳng a vuông góc với đường thẳng \(\Delta \) là trục đối xứng của parabol \(({\rm{P}}).\)

iii) Đường thẳng a cắt parabol \(({\rm{P}})\) tại hai điểm có khoảng cách 6 dm, khoảng cách từ đỉnh của \(({\rm{P}})\) đến \(\Delta \) bằng 3 dm.

Thể tích của vật thể bằng bao nhiêu \({\rm{d}}{{\rm{m}}^3}\) (làm tròn kết quả đến hàng phần mười)?

Xem đáp án » 24/09/2024 1,948

Câu 2:

a) Đạo hàm của hàm số là \({{\rm{f}}^\prime }({\rm{x}}) = 1 - \frac{1}{{{{({\rm{x}} + 2)}^2}}}.\)

Xem đáp án » 24/09/2024 1,797

Câu 3:

Cho hàm số \({\rm{f}}({\rm{x}}) = {\rm{a}}{{\rm{x}}^3} + {\rm{b}}{{\rm{x}}^2} + {\rm{cx}} + {\rm{d}}({\rm{a}},{\rm{b}},{\rm{c}},{\rm{d}} \in \mathbb{R},{\rm{a}} \ne 0)\) có bảng xét dấu của đạo hàm dưới đây

Cho hàm số \({\rm{f}}({\rm{x}}) = {\rm{a}}{{\rm{x}}^3} + {\rm{b}}{{\rm{x}}^2} + {\rm{cx}} + {\rm{d}}({\rm{a}},{\rm{b}},{\rm{c}},{\rm{d}} \in \mathbb{R},{\rm{a}} \ne 0)\) có bảng xét dấu của đạo hàm dưới đây   Hàm số đã cho đồng biến trên khoảng (ảnh 1)

Hàm số đã cho đồng biến trên khoảng

Xem đáp án » 24/09/2024 1,791

Câu 4:

a) Đường thẳng \(\Delta \) có một vectơ chỉ phương với tọa độ là \((1;1;\sqrt 2 ).\)

Xem đáp án » 24/09/2024 1,662

Câu 5:

a) Xác suất của biến cố chọn được học sinh bị tật khúc xạ là \(\frac{{89}}{{240}}.\)

Xem đáp án » 24/09/2024 1,641

Câu 6:

a) Hoành độ giao điểm của \(({\rm{P}})\) và Ox là -2 và 2.

Xem đáp án » 24/09/2024 1,570

Câu 7:

Trong không gian với hệ tọa độ Oxyz, phương trình nào sau đây là phương trình tổng quát của mặt phẳng? 

Xem đáp án » 24/09/2024 1,323

Bình luận


Bình luận