Câu hỏi:
24/09/2024 1,402Người ta cần làm một khối thuỷ tinh có dạng hình chóp tứ giác đều có diện tích toàn phần bằng \(8{\rm{d}}{{\rm{m}}^2}.\) Cạnh đáy của hình chóp bằng bao nhiêu decimét để thể tích của khối thuỷ tinh lớn nhất (làm tròn kết quả đến hàng phần trăm)?
Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).
Quảng cáo
Trả lời:
Đáp số: 1,41.
Gọi cạnh đáy là 2x, độ dài chiều cao mặt bên là y.
Diện tích đáy là \({(2x)^2} = 4{x^2}\), diện tích xung quanh là 4xy.
Đường cao hình chóp bằng \(\sqrt {{{\rm{y}}^2} - {{\rm{x}}^2}} \), thể tích của vật thể là \({\rm{V}} = \frac{{4{{\rm{x}}^2}}}{3}\sqrt {{{\rm{y}}^2} - {{\rm{x}}^2}} .\)
Ta có: \(4{x^2} + 4xy = 8 \Leftrightarrow {x^2} + xy = 2.\)
\( \Rightarrow y = \frac{{2 - {x^2}}}{x} = \frac{2}{x} - x \Rightarrow V = \frac{{4{x^2}}}{3}\sqrt {{{\left( {\frac{2}{x} - x} \right)}^2} - {x^2}} \)
\( = \frac{{4{x^2}}}{3}\sqrt {\frac{4}{{{x^2}}} - 4} = \frac{8}{3}\sqrt {{x^2} - {x^4}} \)\(f(x) = {x^2} - {x^4},x \in (0; + \infty ) \Rightarrow {f^\prime }(x) = 2x - 4{x^3} = 2x\left( {1 - 2{x^2}} \right)\),
\({f^\prime }(x) = 0 \Leftrightarrow x = \sqrt {\frac{1}{2}} .\)
Lập bảng biến thiên hàm thể tích trên khoảng \((0; + \infty )\), ta có thể tích của khối thuỷ tinh lớn nhất khi cạnh của đáy bằng \(2\sqrt {\frac{1}{2}} = \sqrt 2 \approx 1,41({\rm{dm}}).\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Một vật thể có dạng khối tròn xoay được tạo thành khi quay hình phẳng D quanh trục \(\Delta \) một vòng, biết rằng:
i) Hình phẳng D giới hạn bởi một parabol \(({\rm{P}})\) và đường thẳng a.
ii) Đường thẳng a vuông góc với đường thẳng \(\Delta \) là trục đối xứng của parabol \(({\rm{P}}).\)
iii) Đường thẳng a cắt parabol \(({\rm{P}})\) tại hai điểm có khoảng cách 6 dm, khoảng cách từ đỉnh của \(({\rm{P}})\) đến \(\Delta \) bằng 3 dm.
Thể tích của vật thể bằng bao nhiêu \({\rm{d}}{{\rm{m}}^3}\) (làm tròn kết quả đến hàng phần mười)?
Câu 3:
Cho hàm số \({\rm{f}}({\rm{x}}) = {\rm{a}}{{\rm{x}}^3} + {\rm{b}}{{\rm{x}}^2} + {\rm{cx}} + {\rm{d}}({\rm{a}},{\rm{b}},{\rm{c}},{\rm{d}} \in \mathbb{R},{\rm{a}} \ne 0)\) có bảng xét dấu của đạo hàm dưới đây
Hàm số đã cho đồng biến trên khoảng
Câu 4:
a) Đạo hàm của hàm số là \({{\rm{f}}^\prime }({\rm{x}}) = 1 - \frac{1}{{{{({\rm{x}} + 2)}^2}}}.\)
Câu 5:
a) Đường thẳng \(\Delta \) có một vectơ chỉ phương với tọa độ là \((1;1;\sqrt 2 ).\)
Câu 6:
a) Xác suất của biến cố chọn được học sinh bị tật khúc xạ là \(\frac{{89}}{{240}}.\)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
về câu hỏi!