Câu hỏi:
24/09/2024 518Người ta cần làm một khối thuỷ tinh có dạng hình chóp tứ giác đều có diện tích toàn phần bằng \(8{\rm{d}}{{\rm{m}}^2}.\) Cạnh đáy của hình chóp bằng bao nhiêu decimét để thể tích của khối thuỷ tinh lớn nhất (làm tròn kết quả đến hàng phần trăm)?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp số: 1,41.
Gọi cạnh đáy là 2x, độ dài chiều cao mặt bên là y.
Diện tích đáy là \({(2x)^2} = 4{x^2}\), diện tích xung quanh là 4xy.
Đường cao hình chóp bằng \(\sqrt {{{\rm{y}}^2} - {{\rm{x}}^2}} \), thể tích của vật thể là \({\rm{V}} = \frac{{4{{\rm{x}}^2}}}{3}\sqrt {{{\rm{y}}^2} - {{\rm{x}}^2}} .\)
Ta có: \(4{x^2} + 4xy = 8 \Leftrightarrow {x^2} + xy = 2.\)
\( \Rightarrow y = \frac{{2 - {x^2}}}{x} = \frac{2}{x} - x \Rightarrow V = \frac{{4{x^2}}}{3}\sqrt {{{\left( {\frac{2}{x} - x} \right)}^2} - {x^2}} \)
\( = \frac{{4{x^2}}}{3}\sqrt {\frac{4}{{{x^2}}} - 4} = \frac{8}{3}\sqrt {{x^2} - {x^4}} \)\(f(x) = {x^2} - {x^4},x \in (0; + \infty ) \Rightarrow {f^\prime }(x) = 2x - 4{x^3} = 2x\left( {1 - 2{x^2}} \right)\),
\({f^\prime }(x) = 0 \Leftrightarrow x = \sqrt {\frac{1}{2}} .\)
Lập bảng biến thiên hàm thể tích trên khoảng \((0; + \infty )\), ta có thể tích của khối thuỷ tinh lớn nhất khi cạnh của đáy bằng \(2\sqrt {\frac{1}{2}} = \sqrt 2 \approx 1,41({\rm{dm}}).\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \({\rm{f}}({\rm{x}}) = {\rm{a}}{{\rm{x}}^3} + {\rm{b}}{{\rm{x}}^2} + {\rm{cx}} + {\rm{d}}({\rm{a}},{\rm{b}},{\rm{c}},{\rm{d}} \in \mathbb{R},{\rm{a}} \ne 0)\) có bảng xét dấu của đạo hàm dưới đây
Hàm số đã cho đồng biến trên khoảng
Câu 2:
a) Xác suất của biến cố chọn được học sinh bị tật khúc xạ là \(\frac{{89}}{{240}}.\)
Câu 3:
a) Đường thẳng \(\Delta \) có một vectơ chỉ phương với tọa độ là \((1;1;\sqrt 2 ).\)
Câu 5:
a) Đạo hàm của hàm số là \({{\rm{f}}^\prime }({\rm{x}}) = 1 - \frac{1}{{{{({\rm{x}} + 2)}^2}}}.\)
Câu 6:
Một vật thể có dạng khối tròn xoay được tạo thành khi quay hình phẳng D quanh trục \(\Delta \) một vòng, biết rằng:
i) Hình phẳng D giới hạn bởi một parabol \(({\rm{P}})\) và đường thẳng a.
ii) Đường thẳng a vuông góc với đường thẳng \(\Delta \) là trục đối xứng của parabol \(({\rm{P}}).\)
iii) Đường thẳng a cắt parabol \(({\rm{P}})\) tại hai điểm có khoảng cách 6 dm, khoảng cách từ đỉnh của \(({\rm{P}})\) đến \(\Delta \) bằng 3 dm.
Thể tích của vật thể bằng bao nhiêu \({\rm{d}}{{\rm{m}}^3}\) (làm tròn kết quả đến hàng phần mười)?
về câu hỏi!