Câu hỏi:
24/09/2024 2,975
Một người gửi ngân hàng 40 triệu đồng theo thể thức lãi kép với lãi suất 0,52% một tháng (kể từ tháng thứ hai, tiền lãi được tính theo phần trăm của tổng tiền lãi tháng trước đó và tiền gốc của tháng trước đó). Giả sử lãi suất không thay đổi trong nhiều tháng liên tiếp. Sau ít nhất bao nhiêu tháng, người đó có nhiều hơn 48 triệu đồng?
Một người gửi ngân hàng 40 triệu đồng theo thể thức lãi kép với lãi suất 0,52% một tháng (kể từ tháng thứ hai, tiền lãi được tính theo phần trăm của tổng tiền lãi tháng trước đó và tiền gốc của tháng trước đó). Giả sử lãi suất không thay đổi trong nhiều tháng liên tiếp. Sau ít nhất bao nhiêu tháng, người đó có nhiều hơn 48 triệu đồng?
Quảng cáo
Trả lời:
Đáp số: 36.
Số tiền có được sau n tháng gửi tiết kiệm là \(40{\left( {1 + \frac{{0,52}}{{100}}} \right)^n}\) (triệu đồng).
\(40{\left( {1 + \frac{{0,52}}{{100}}} \right)^{\rm{n}}} > 48 \Leftrightarrow {\rm{n}} > {\log _{1,0052}}\frac{{48}}{{40}}.\)Vì \({\log _{1,0052}}\frac{{48}}{{40}} \approx 35,1529\) nên đáp số là 36.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp số: 139.
\({\rm{MK}} = \frac{{{{\rm{C}}^\prime }{{\rm{D}}^\prime }}}{2} = 4(\;{\rm{m}})\)\({\rm{CK}} = {\rm{MC}} - {\rm{MK}} = 7 - 4 = 3(\;{\rm{m}}).\)
\({{\rm{C}}^\prime }{{\rm{K}}^2} = {\rm{C}}{{\rm{C}}^{\prime 2}} - {\rm{C}}{{\rm{K}}^2} = {5^2} - {3^2} = 16\),
\({{\rm{C}}^\prime }{\rm{K}} = 4(\;{\rm{m}}).\)
\({\rm{M}}{{\rm{M}}^\prime } = {{\rm{C}}^\prime }{\rm{K}} = 4(\;{\rm{m}}).\)
\({\rm{MH}} = {\rm{OM}} - {\rm{OH}} = 7 - 4 = 3(\;{\rm{m}}).\)
\(\cos \widehat {{\rm{M}}{{\rm{M}}^\prime }{{\rm{O}}^\prime }} = - \cos \widehat {{\rm{HM}}{{\rm{M}}^\prime }} = - \frac{{{\rm{HM}}}}{{{\rm{M}}{{\rm{M}}^\prime }}} = - \frac{3}{4}\),
\(\widehat {{\rm{M}}{{\rm{M}}^\prime }{{\rm{O}}^\prime }} \approx {139^o }.\)

Lời giải
Đáp số: 30.

Chọn hệ trục toạ độ như hình vẽ, đơn vị của mỗi trục là 1 cm. Đường tròn chứa cung tròn lớn ACB có phương trình \({{\rm{x}}^2} + {{\rm{y}}^2} = 400.\)
\({\rm{AH}} = {\rm{BH}} = 16\), suy ra \({\rm{OH}} = 12\) và \({\rm{H}}( - 12;0).\)
Suy ra những điểm ( \(x\); y) thuộc cung nhỏ AC thoả mãn \({\rm{x}} \in [ - 12;20],{\rm{y}} = \sqrt {400 - {{\rm{x}}^2}} .\)
Hàm số \({\rm{f}}({\rm{x}}) = \sqrt {400 - {{\rm{x}}^2}} ,{\rm{x}} \in [ - 12;20]\) có đồ thị là cung nhỏ AC. Thể tích của chiếc mũ là
\({\rm{V}} = \pi \int_{ - 12}^{20} {{{\left( {\sqrt {400 - {{\rm{x}}^2}} } \right)}^2}} {\rm{dx}} = \pi \int_{ - 12}^{20} {\left( {400 - {{\rm{x}}^2}} \right)} {\rm{dx}}\)
\({\rm{V}} = \left. {\pi \left( {400{\rm{x}} - \frac{{{{\rm{x}}^3}}}{3}} \right)} \right|_{ - 12}^{20} = \pi \left( {400.20 - \frac{{{{20}^3}}}{3}} \right) - \pi \left[ {400.( - 12) - \frac{{{{( - 12)}^3}}}{3}} \right]\)
\( = \frac{{16000\pi }}{3} + 4224\pi = \frac{{28672\pi }}{3} \approx 30025\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)
\( \approx 30\left( {{\rm{d}}{{\rm{m}}^3}} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.