Câu hỏi:
24/09/2024 8,431
Một phân xưởng sản xuất bóng đèn có tỉ lệ bóng đạt chuẩn là 95%. Để hạn chế số lượng bóng không đạt chuẩn được bán ra thị trường, người ta lắp đặt một thiết bị kiểm tra chất lượng tự động S. Nếu một bóng đèn không đạt chuẩn, thiết bị S sẽ loại bỏ nó với xác suất 0,99. Khi kiểm tra lại các bóng đèn bị loại, người ta nhận thấy có 10% số đó là bóng đạt chuẩn. Chọn ngẫu nhiên 1 bóng đèn do phân xưởng đó sản xuất. Xác suất bóng đèn được chọn đạt chuẩn biết rằng nó không bị thiết bị S loại bỏ bằng \(\frac{{\rm{a}}}{{\rm{b}}}\) với a, b là số nguyên dương và \({\rm{b}} < 2000.\) Giá trị của biểu thức \({\rm{a}} + {\rm{b}}\) là bao nhiêu?
Một phân xưởng sản xuất bóng đèn có tỉ lệ bóng đạt chuẩn là 95%. Để hạn chế số lượng bóng không đạt chuẩn được bán ra thị trường, người ta lắp đặt một thiết bị kiểm tra chất lượng tự động S. Nếu một bóng đèn không đạt chuẩn, thiết bị S sẽ loại bỏ nó với xác suất 0,99. Khi kiểm tra lại các bóng đèn bị loại, người ta nhận thấy có 10% số đó là bóng đạt chuẩn. Chọn ngẫu nhiên 1 bóng đèn do phân xưởng đó sản xuất. Xác suất bóng đèn được chọn đạt chuẩn biết rằng nó không bị thiết bị S loại bỏ bằng \(\frac{{\rm{a}}}{{\rm{b}}}\) với a, b là số nguyên dương và \({\rm{b}} < 2000.\) Giá trị của biểu thức \({\rm{a}} + {\rm{b}}\) là bao nhiêu?
Quảng cáo
Trả lời:
Đáp số: 3779.
Chọn ngẫu nhiên 1 bóng đèn do phân xưởng sản xuất.
Gọi C là biến cố bóng đèn đó đạt chuẩn và L là biến cố bóng đèn đó bị thiết bị S loại.
Ta có \({\rm{P}}({\rm{C}}) = 0,95;{\rm{P}}({\rm{L}}\mid \overline {\rm{C}} ) = 0,99;{\rm{P}}({\rm{C}}\mid {\rm{L}}) = 0,1.\)
Suy ra \(P(L) = \frac{{P(L\mid \bar C)P(\overline {\rm{C}} )}}{{{\rm{P}}(\overline {\rm{C}} \mid {\rm{L}})}} = \frac{{0,99 \cdot 0,05}}{{1 - 0,1}} = \frac{{11}}{{200}}\)
và \({\rm{P}}({\rm{CL}}) = {\rm{P}}({\rm{C}}\mid {\rm{L}}) \cdot {\rm{P}}({\rm{L}}) = 0,1 \cdot \frac{{11}}{{200}} = \frac{{11}}{{2000}}.\)
Xác suất bóng đèn được chọn đạt chuẩn biết rằng nó không bị thiết bị S loại là \({\rm{P}}({\rm{C}}\mid \overline {\rm{L}} ) = \frac{{{\rm{P}}({\rm{C}}\overline {\rm{L}} )}}{{{\rm{P}}(\overline {\rm{L}} )}} = \frac{{{\rm{P}}({\rm{C}}) - {\rm{P}}({\rm{CL}})}}{{1 - {\rm{P}}({\rm{L}})}} = \frac{{1889}}{{1890}}.\) Suy \({\rm{raa}} + {\rm{b}} = 3779.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp số: 139.
\({\rm{MK}} = \frac{{{{\rm{C}}^\prime }{{\rm{D}}^\prime }}}{2} = 4(\;{\rm{m}})\)\({\rm{CK}} = {\rm{MC}} - {\rm{MK}} = 7 - 4 = 3(\;{\rm{m}}).\)
\({{\rm{C}}^\prime }{{\rm{K}}^2} = {\rm{C}}{{\rm{C}}^{\prime 2}} - {\rm{C}}{{\rm{K}}^2} = {5^2} - {3^2} = 16\),
\({{\rm{C}}^\prime }{\rm{K}} = 4(\;{\rm{m}}).\)
\({\rm{M}}{{\rm{M}}^\prime } = {{\rm{C}}^\prime }{\rm{K}} = 4(\;{\rm{m}}).\)
\({\rm{MH}} = {\rm{OM}} - {\rm{OH}} = 7 - 4 = 3(\;{\rm{m}}).\)
\(\cos \widehat {{\rm{M}}{{\rm{M}}^\prime }{{\rm{O}}^\prime }} = - \cos \widehat {{\rm{HM}}{{\rm{M}}^\prime }} = - \frac{{{\rm{HM}}}}{{{\rm{M}}{{\rm{M}}^\prime }}} = - \frac{3}{4}\),
\(\widehat {{\rm{M}}{{\rm{M}}^\prime }{{\rm{O}}^\prime }} \approx {139^o }.\)

Lời giải
Đáp số: 30.

Chọn hệ trục toạ độ như hình vẽ, đơn vị của mỗi trục là 1 cm. Đường tròn chứa cung tròn lớn ACB có phương trình \({{\rm{x}}^2} + {{\rm{y}}^2} = 400.\)
\({\rm{AH}} = {\rm{BH}} = 16\), suy ra \({\rm{OH}} = 12\) và \({\rm{H}}( - 12;0).\)
Suy ra những điểm ( \(x\); y) thuộc cung nhỏ AC thoả mãn \({\rm{x}} \in [ - 12;20],{\rm{y}} = \sqrt {400 - {{\rm{x}}^2}} .\)
Hàm số \({\rm{f}}({\rm{x}}) = \sqrt {400 - {{\rm{x}}^2}} ,{\rm{x}} \in [ - 12;20]\) có đồ thị là cung nhỏ AC. Thể tích của chiếc mũ là
\({\rm{V}} = \pi \int_{ - 12}^{20} {{{\left( {\sqrt {400 - {{\rm{x}}^2}} } \right)}^2}} {\rm{dx}} = \pi \int_{ - 12}^{20} {\left( {400 - {{\rm{x}}^2}} \right)} {\rm{dx}}\)
\({\rm{V}} = \left. {\pi \left( {400{\rm{x}} - \frac{{{{\rm{x}}^3}}}{3}} \right)} \right|_{ - 12}^{20} = \pi \left( {400.20 - \frac{{{{20}^3}}}{3}} \right) - \pi \left[ {400.( - 12) - \frac{{{{( - 12)}^3}}}{3}} \right]\)
\( = \frac{{16000\pi }}{3} + 4224\pi = \frac{{28672\pi }}{3} \approx 30025\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)
\( \approx 30\left( {{\rm{d}}{{\rm{m}}^3}} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.