Câu hỏi:

10/10/2024 1,230

Đường cong trong hình dưới là đồ thị của hàm số nào trong bốn hàm số sau đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Dựa vào đồ thị hàm số ta thấy:

Đồ thị hàm số cắt trục tung tại điểm có tọa độ \(\left( {0;d} \right)\) với \(d > 0\) nên ta loại đáp án C.

\(\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty \), suy ra hệ số \(a > 0\) nên ta loại đáp án D.

Mặt khác hàm số đạt cực trị tại hai điểm \({x_1},\,{x_2}\), dựa vào hình vẽ ta thấy \({x_1},\,{x_2}\) trái dấu nên đáp án ta loại đáp án B và chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Ta có \[\mathop {\lim }\limits_{x \to  + \infty } \left[ {y - \left( {2x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \left( { - \frac{3}{{x + 1}}} \right) = 0\]; \[\mathop {\lim }\limits_{x \to  - \infty } \left[ {y - \left( {2x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to  - \infty } \left( { - \frac{3}{{x + 1}}} \right) = 0\].

Do đó, đường thẳng \(y = 2x + 1\) là tiệm cận xiên của đồ thị hàm số đã cho.

Câu 2

Lời giải

Đáp án đúng là: D

Đồ thị hàm số đã cho nhận giao điểm của hai đường tiệm cận làm tâm đối xứng.

Giao điểm này có tọa độ là \(\left( { - 1;\,0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP