Bộ 10 đề thi giữa kì 1 Toán 12 Cánh diều có đáp án - Đề 02
82 người thi tuần này 4.6 6.4 K lượt thi 22 câu hỏi 90 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
210 câu Bài tập Tích phân cực hay có lời giải (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. Hàm số đã cho đồng biến trên khoảng \(\left( { - 1;1} \right)\).
B. Hàm số đã cho đồng biến trên mỗi khoảng \[\left( { - \infty ;\, - \,2} \right)\] và \(\left( {2;\, + \infty } \right)\).
C. Hàm số đã cho nghịch biến trên khoảng \[\left( {0;\,1} \right)\].
D. Hàm số đã cho nghịch biến trên khoảng \[\left( { - 1;\,1} \right)\].
Lời giải
Đáp án đúng là: C
Từ đồ thị ta thấy:
+ Hàm số đã cho đồng biến trên mỗi khoảng \(\left( { - 1;0} \right)\) và \(\left( {1; + \infty } \right)\);
+ Hàm số đã cho nghịch biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {0;1} \right)\).
Câu 2
Lời giải
Đáp án đúng là: B
Dựa vào bảng xét dấu, ta thấy \(f'\left( x \right)\) đổi dấu từ dương sang âm khi qua điểm \[x = 0\] nên hàm số đã cho đạt cực đại tại điểm \[x = 0\].
Câu 3
Lời giải
Đáp án đúng là: D
Từ bảng biến thiên, ta thấy \[M = \mathop {\max }\limits_{\left[ { - 1;\,3} \right]} f\left( x \right) = f\left( 0 \right) = 5\].
Câu 4
Lời giải
Đáp án đúng là: A
Quan sát bảng biến thiên, ta thấy:
+) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = + \infty ;\,\,\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = - \infty \). Do đó, đường thẳng \(x = 2\) là tiệm cận đứng của đồ thị hàm số đã cho.
+) \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = - 1;\,\,\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - 1\). Do đó, đường thẳng \(y = - 1\) là tiệm cận ngang của đồ thị hàm số đã cho.
Câu 5
Lời giải
Đáp án đúng là: C
Ta có \[\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {2x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( { - \frac{3}{{x + 1}}} \right) = 0\]; \[\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {2x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left( { - \frac{3}{{x + 1}}} \right) = 0\].
Do đó, đường thẳng \(y = 2x + 1\) là tiệm cận xiên của đồ thị hàm số đã cho.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.













