Câu hỏi:

10/10/2024 399

Một chiếc đèn tròn được treo song song với mặt phẳng nằm ngang bởi ba sợi dây không dãn xuất phát từ điểm \(O\) trên trần nhà và lần lượt buộc vào ba điểm \(A,\,B,\,C\) trên đèn tròn sao cho các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \) lần lượt trên mối dây \(OA,\,OB,\,OC\) đôi một vuông góc với nhau và \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right| = 15\) (N) (như hình vẽ). Trọng lượng của chiếc đèn tròn đó là bao nhiêu Newton (làm tròn kết quả đến hàng đơn vị)?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \({A_1},\,{B_1},\,{C_1}\) lần lượt là các điểm sao cho \(\overrightarrow {O{A_1}}  = \overrightarrow {{F_1}} ,\,\,\overrightarrow {O{B_1}}  = \overrightarrow {{F_2}} ,\,\overrightarrow {O{C_1}}  = \overrightarrow {{F_3}} \). Lấy các điểm \({D_1},{A'_1},\,{B'_1},\,{D'_1}\) sao cho \(O{A_1}{D_1}{B_1}.{C_1}{A'_1}{D'_1}{B'_1}\) là hình hộp như hình dưới đây.

Theo quy tắc hình hộp, ta có: \(\overrightarrow {O{A_1}}  + \overrightarrow {O{B_1}}  + \overrightarrow {O{C_1}}  = \overrightarrow {O{{D'}_1}} \).

Mặt khác, do các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \) đôi một vuông góc và \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right| = 15\) (N) nên hình hộp \(O{A_1}{D_1}{B_1}.{C_1}{A'_1}{D'_1}{B'_1}\) có ba cạnh \(O{A_1},\,O{B_1},\,O{C_1}\)  đôi một vuông góc và bằng nhau.

Do đó, hình hộp \(O{A_1}{D_1}{B_1}.{C_1}{A'_1}{D'_1}{B'_1}\) là hình lập phương có độ dài cạnh bằng 15.

Suy ra độ dài đường chéo của hình lập phương đó bằng \(15\sqrt 3 \).

Do chiếc đèn ở vị trí cân bằng nên \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow P \), ở đó \(\overrightarrow P \) là trọng lực tác dụng lên chiếc đèn.

Vậy trọng lượng của chiếc đèn là \(\left| {\overrightarrow P } \right| = \left| {\overrightarrow {O{{D'}_1}} } \right| = 15\sqrt 3  \approx 26\) (N).

Đáp số: \(26\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tiệm cận xiên của đồ thị hàm số \(y = 2x + 1 - \frac{3}{{x + 1}}\) là đường thẳng

Xem đáp án » 10/10/2024 5,844

Câu 2:

Cho \(a \ne 0,\,{b^2} - 3ac > 0\). Hàm số \(y = a{x^3} + b{x^2} + cx + d\) có tất cả bao nhiêu điểm cực trị?

Xem đáp án » 10/10/2024 2,893

Câu 3:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.

Tâm đối xứng của đồ thị hàm số có tọa độ là

Xem đáp án » 10/10/2024 2,859

Câu 4:

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Khi đó:  

a) \(\overrightarrow {B'B}  - \overrightarrow {DB}  = \overrightarrow {B'D} \).

b) \(\overrightarrow {BA}  + \overrightarrow {BC}  + \overrightarrow {BB'}  = \overrightarrow {BD} \).

c) \(\left| {\overrightarrow {BC}  - \overrightarrow {BA}  + \overrightarrow {C'A} } \right| = 2a\).

d) Với \(M,\,N\) lần lượt là trung điểm của \(AD,\,BB'\) thì \(\cos \left( {\overrightarrow {MN} ,\,\,\overrightarrow {AC'} } \right) = \frac{{\sqrt 2 }}{3}\).

Xem đáp án » 10/10/2024 2,506

Câu 5:

Hàm số \(y = \frac{{{x^2} - x + 9}}{{x - 1}}\) nghịch biến trên khoảng nào trong các khoảng dưới đây?

Xem đáp án » 10/10/2024 2,082

Câu 6:

Cho hàm số \(y = f\left( x \right) = {x^3} - 3{x^2} - 9x + 5\).

a) Hàm số đã cho đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\)\(\left( {3; + \infty } \right)\).

b) Giá trị cực đại của hàm số đã cho là \( - 1\).

c) Đồ thị hàm số đã cho đi qua các điểm \(\left( {0;\,5} \right),\,\,\left( {1; - 6} \right),\,\left( { - 1;\, - 10} \right)\).

d) Đường thẳng \(y =  - 22\) cắt đồ thị hàm số đã cho tại 3 điểm phân biệt.

Xem đáp án » 10/10/2024 2,040

Câu 7:

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = f\left( x \right) = \frac{{a{x^2} + bx + c}}{{x + n}}\) (với \(a \ne 0\)) có đồ thị là đường cong như hình dưới đây.

a) Hàm số đã cho nghịch biến trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\).

b) Hàm số đã cho đạt cực đại tại \(x =  - 3\); đạt cực tiểu tại \(x =  - 1\).

c) Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng \(y =  - 2\).

d) Công thức xác định hàm số đã cho là \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\).

Xem đáp án » 10/10/2024 1,820

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store