Câu hỏi:
10/10/2024 1,092Cho một tấm nhôm hình vuông cạnh 12 cm, người ta cắt ở bốn góc bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng \(x\) (cm), rồi gập tấm nhôm lại để được một cái hộp có dạng hình hộp chữ nhật không có nắp (tham khảo hình vẽ).
Giá trị của \(x\) bằng bao nhiêu centimét để thể tích của khối hộp đó là lớn nhất?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta thấy độ dài \(x\) (cm) của cạnh hình vuông bị cắt phải thỏa mãn điều kiện \(0 < x < 6\).
Khi đó, thể tích của khối hộp là:
\(V\left( x \right) = x{\left( {12 - 2x} \right)^2} = 4\left( {{x^3} - 12{x^2} + 36x} \right)\) với \(0 < x < 6\).
Ta có: \(V'\left( x \right) = 4\left( {3{x^2} - 24x + 36} \right)\), \(V'\left( x \right) = 0 \Leftrightarrow x = 2\) hoặc \(x = 6\).
Bảng biến thiên của hàm số \(V\left( x \right)\) như sau:
Căn cứ vào bảng biến thiên, ta thấy trên khoảng \(\left( {0;\,6} \right)\), hàm số \(V\left( x \right)\) đạt giá trị lớn nhất bằng \(128\) tại \(x = 2\). Vậy để khối hộp tạo thành có thể tích lớn nhất thì \(x = 2\) (cm).
Đáp số: \(2\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.
Tâm đối xứng của đồ thị hàm số có tọa độ là
Câu 4:
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Khi đó:
a) \(\overrightarrow {B'B} - \overrightarrow {DB} = \overrightarrow {B'D} \).
b) \(\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {BB'} = \overrightarrow {BD} \).
c) \(\left| {\overrightarrow {BC} - \overrightarrow {BA} + \overrightarrow {C'A} } \right| = 2a\).
d) Với \(M,\,N\) lần lượt là trung điểm của \(AD,\,BB'\) thì \(\cos \left( {\overrightarrow {MN} ,\,\,\overrightarrow {AC'} } \right) = \frac{{\sqrt 2 }}{3}\).
Câu 5:
Câu 6:
Cho hàm số \(y = f\left( x \right) = {x^3} - 3{x^2} - 9x + 5\).
a) Hàm số đã cho đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {3; + \infty } \right)\).
b) Giá trị cực đại của hàm số đã cho là \( - 1\).
c) Đồ thị hàm số đã cho đi qua các điểm \(\left( {0;\,5} \right),\,\,\left( {1; - 6} \right),\,\left( { - 1;\, - 10} \right)\).
d) Đường thẳng \(y = - 22\) cắt đồ thị hàm số đã cho tại 3 điểm phân biệt.
Câu 7:
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = f\left( x \right) = \frac{{a{x^2} + bx + c}}{{x + n}}\) (với \(a \ne 0\)) có đồ thị là đường cong như hình dưới đây.
a) Hàm số đã cho nghịch biến trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\).
b) Hàm số đã cho đạt cực đại tại \(x = - 3\); đạt cực tiểu tại \(x = - 1\).
c) Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng \(y = - 2\).
d) Công thức xác định hàm số đã cho là \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\).
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
về câu hỏi!